PROCEEDINGS

First International Conference
on Ada® Programming

NBS-16273

~~THRU-~-
§89-16325

3]
- - w
Language Applications £
For The NASA Space Station 3zd
2 w0
_ o
L s3A R
&/ a3s
) Hﬂ-’c n
\ ?’ﬁ? o -
[> W)
ﬁ%u%wa,&giow%%m% el
(TR R IIIIITE <
g
3): n ~::
-.6— 4 T";:': —;—'—:——: "'g“'
B AR AT T 5=
NP A, S5 Q=
A o el ~ow0
S A &7 T 2ad
x,,fwﬁfxmﬂgwég%%%§§7 ~ 2
/(‘j/ t/,.ai‘,., ’\\? AV 2NN Eh 7 2%:
e iy =
\ oS g o«
“‘U\\ / =1ty
//ﬂ%W7/% é#%%) =
Ly =52 L
et =
" (./f:' p—
\9 APR 0 8§ 1988 P
X0
June 2 -5, 1986 -
| 11
Hosted by: '

b - :4
University of Houston-Clear Lake —_—
School of Sciences and Technologies Tl

High Technologies Laboratory -

NASA Lyndon B. Johnson Space Center

In Cooperation with !_ocal Contractors

Unclas
167026

¢sclL 08B

420

{NASH)

VCIURE 1

G3/61

r' v Y

Jo707 6

VP

6/“}/7‘1 7 ‘/M /

~ @
Uy
J

PROCEEDTINGSGS

FIRST INTERMATIONAL CONFERENCE ON ADA® PROGRAMMING

LANGUAGE APPLICATIONS FOR THE NASA SpACE STATION

Edited by

Rodney L. Bown
High Technologles Laboratories
University of Houston-Clear Lake

A Conference Cohosted by:

NASA Lyndon B. Johnson Space Center
University of Houston-Clear Lake
School of Sciences and Technologles
High Technologles Laboratories
In Cooperation with Local Contractors.

Houston, Texas

.‘ June 2-5, 1986

T m—.

rarT AN e

AOC'ESSIONING, REPRO

BY OR FOR NASA PERMETTEb

Copyright 1986 by
University of Houston-Clear Lake

This work relates to NASA Contract No. NAS 9-17010.
The U. S. Government has a royalty-free license to
exXercise all rights under the copyright claimed herein
for Government purposes. All other rights are
reserved. However, copyright is not claimed for any
portion of this book written by a United States
Government employee as part of his or her official
duties.

NNASA University
National Aeronautics and Of "Ious t On

Space Administration

Lyndon B. Johnson Space Center
Housion. Tesas Clear Lake

77058
Houston, Texas 77058-1068

WELCOME TO TEXAS

The NASA space station will be the vehicle that will enable
man to have a permanent presence in space. The First International
Conference on Ada* Programming Language Applications for the NASA
Space Station has provided an opportunity for the government,
industry, and university to engage in a lively technical
discussion related to the global network of information system
resources for this new vehicle and its new world environment.

The Lyndon B. Johnson Space Center, the University of
Houston-Clear Lake, and supporting con.ractors welcome all out-of-
town attendees to Clear Lake during the Texas sesguicentennial
year. The conference committee is committed to providing a
quality technical conference and a friendly Texas experience for
all attendees and their guests. The conference has been organized
to provide multiple technical sessions/panels/activities on a
variety of issues. 1In addition, the local arrangements committee
will assist all attendees to plan and schedule non-conference
activities that will provide an opportunity for everyone to enjoy
the Houston/Bay Area/Galveston attractions.

We believe the contents of this volume will provide a
valuable technical resource for future research and development
efforts directed to the support of NASA space activities. We are
proud of the organizations and their people who have contributed
to the success of the conference.

Jack Garman, Deputy Director Edward T. Dickerson, Dean
Mission Support Sciences and Technologies

4
%’9‘" P N e W . . WQ{M
Ed Chevers, Deputy Chief Charles W. McKay, Diretctor
Avionics Systems Division High Technologies Laboratories
NASA Lyndon B. Johnson University of Houston-
Space Center Clear Lake
* Ada 1s a registered trademark of the U.S. Government Ada

Joint Program Office

iii

ACKNOWLEDGEMENTS

Steering Committee
Jack Garman
Ed Chevers
Edward T. Dickerson
Charles W. McKay

Conference Chair
Rodney L. Bown

Executive Coordinators
Bob MacDonald
Caral Kasworm

Publicity
Becky Schergens

Technical Committee
Richard Kessinger
Kathy Rogers

Local Arrangements
Al Mandelin
Ed Monteiro

NASA Exhibits
Roger Bilstein

International Host
Steve Brody

Members of the Support Team

Steve Gorman
Ken Goodwin
Pat Rogers
Cathie Duffy
Sue LeGrand
Paul Brown
Gary Barber
Mark Denson

Richard Lehman
Charlie Randall

Special Acknowlegement

Lyndon B. Johnson Space Center
Lyndon B. Johnson Space Center
University of Houston-Clear Lake
University of Hcuston-Clear Lake

University of Houston-Clear Lake

Lyndon B. Johnson Space Center
University of Houston-Clear Lake

University of Houston-Clear Lake

Softech

Rockwell International and Vice-
Chairperson of the Clear Lake
Chapter of SIGAda

IBM, Federal Systems Division
McDonnell-Douglas

University of Houston-Clear Lake
Lyndon B. Johnson Space Center

Lyndon B. Johnson Space Center
Charles Stark Draper Labs.
University of liouston-Clear Lake
University of Houston-Clear Lake
Softech

Hikkok

Intermetrics

McDonnell-Douglas and Chairman of
the Clear Lake Chapter of SIGAda
Lockheed

GHG Corp.

The entire organization extends a special message of
gratitude to Mss. Vickie Gilliland, Mary Ann Pollard, Karen
Gunter, Sheri Lindelsee, and Janice Fisher for their friendly

office support.

iv

TABLE OF CONTENTS

Note: Page numbers are listed in the following sequence: session letter.
(session number.) paper number. page number.

Event/Paper Page Number
OPENING PLENARY SESSION A.l

SESSION B.l - TEST AND VERIFICATION

Ada Task Debugging With An Automated Tool B.1.1.1
R.G. Fainter, Virginia Tech.
T.E. Lindquist, Arizona State University

Software Unit Testing in an Ada Fnvironment B.1.2.1
Glenn Warnock, Prior Data Sciences Ltd.

Formally Verifying Ada Programs Which Use
Real Number Types B.1.3.1
Devid Sutherland, Odyssey Research

Ada Test and Verification System B.1.4.1
Tom Strelich, General Research

An Ada Benchmarking Taxonomy B.1.5.1
Davi{d Auty, SofTech, Inc.

Formal Veri{fication B.1.6.1
Norm Cohen, SofTech, Inc.

SESSION B.2 - ENVIRONMENT ISSUES

Programming Support Environment Issues in
the Byron Programming Environment B.2.1.1
Matthew J. Larsen, Intermetrics, Inc.

An Ada Programming Support Environment B.2.2.1
Al Tyrrill, Rockwell International
A.D. Chan, Rockwell International

Software Fngineering Environment Tool Set
Integration B.2.3.1
William P. Selfiidge, Rockwell International

Procedures and Tools for Building Large
Ada Systems B.
Ben Hyde, Intermetrics, Inc.

o
&
—

Rational's Experience Using Ada for Very

Large Systems B.2.5.1
James E. Archer, Jr., Rational
Michael T. Devlin, Ratfonal

TABLE OF CONTENTS (continued)

Event/Paper

Using Ada on a Workstation for lLarge Projects
Arra S. Avakian, Alsys, Inc.
Ben M, Brosgol, Alsys, Inc.
Mitchell Gart, Alsys, Inc.

SESSION B.3 - DISTRIBUTED ADA ISSUES

A Distributed Programming Environment for Ada
Peter Brennan, Thomas McDonnell,
Gregory McFarland, Lawrence J. Timmins, and
John D. Litke, Grumman Data Systems

Distributed Ada: Methodology, Notation, and Tools
Greg Eisenhauer, Rakesh Jha, and Mike Kamrad,
Honeywell Systems and Research Center

An Ada Implementation of the Natwork Manager for
the Advanced Information Processing System

Gail A. Nagle, The Charles Stark Draper Laboratory

Distributed Program Entities in Ada
Pat Rogers, University of Houston-Clear Lake

Charles W. McKay, University of Houston~Clear Lake

A Distributed APSE
S. Tucker Taft, Intermetrics, Inc.

Implementation of Ada Protocols on MIL-STD-1553B
Data Bus
Smil Ruhman, Weizmann Institute of Scilence
Flavia Rosemberg, Weizmann Institute of Science

SESSION B.4 - LIFE CYCLE ISSUES 1

Software Englneering and Ada in Design
Don O'Neill, IBM FSD

Analysls and Specificatfon Tools in Relation
to the Ada Programming Support Environment
John W. Hendricks, Systems Technology, Inc.

Some Design Constraints Required for the Use

of Generic Software in Embedded Systems:

Packages Which Manapge Abstract Dynamic Structures
Without the Need for Garbage Collecttion

Charles S. Johnson, Productivity Research Corporation

A Computer-Based Specification Methodology
Robert G. Munck, The MITRE Corporation

vi

Page Number
B.2.6.1

B.3.2.1

B.3.3.1

B.3.4.1

B.3.5.1

B.3.6.1

B.4.1.1

B.4.3.1

B.4.4.1

TABLE OF CONTENTS (continued)

Event/Paper

Towards a Document Structure Editor for

Software Requirements Analysis
Anthony Lekkos, University of Houston-Clear Lake
Vincent Kowalski{, University of Houston-Clear Lake

DEC Ada Interface to Screen Management
Cuidelines (SMG)
Anthony Lekkos, University of Houston-Clear Lake
Somsak Loamanachareon, University of Houston-Clear Lake

A Proposed Classification Scheme for Ada-Based
Sof tware Products
Gary J. Cernosek, McDonnell-Douglas

SESSION C - ADA IN EUROPE

The Status of Ada in Europe
Dr. Mike Rogers, Information Technologies
and Telecomms Task Force

Ada Technology Assessment: An Important Issue Within
the European Columbus Support Technology Programme
P. Vielcanet, Informatique Internationale

Structuring the Formal Definit{on of Ada
Kurt W. Hansen, Dansk Datamatik Center

Recent Trends Related to the Use of Formal Methods
in Software Englneering
Soren Prehn, Dansk Datamatik Center

SESSION D.l1 - MANAGEMENT/TRAINING ISSUES

Managing Ada Development
James Green, Dalmo Victor Textron (Singer)

Lessons Learned: Managing the Development of
a Corporate Ada Training Project
Linda F. Blackmon, General Dynamics

Multilanguage Sof tware Malntenance
Gregory Aharonlan, Source Translation and Optimization

GSFC Ada Programmlng Guidelines

paniel M. Roy, Century Computlng Inc.
Robert Nclson, Goddard Space Flight Center

vit

Page Number

B.4.5.1

TABLE OF CONTENTS (continued)

Event/Paper Page Number
Ada Education in a Software Life-Cycle Context D.1.5.1

Anne J. Clough, The Charles Stark Draper Laboratory

Professionalism D.1.6.1
Ed Berard, EVB Software Engineering, Inc.

NASA Training Program for Ada D.1.7.1
Joint NASA JSC/UH-CL Presentation

SESSION D.2 - CAIS

The Impact of Common Ada Interface Set Specifications

on Space Station Information Systems D.2.1.1
Jorge L. Diaz-Herrera, George Mason University
Edgar H. Sibley, George Mason University

A Risk Management Approach to CAIS Development D.2.2.1
Hal Hart, Judy Kerner, Tony Alden, Frank Belz,
and Frank Tadman, TRW Defense Systems Group

Extending tie Granularity of Representation
and Control for CAIS Process Node D.2.3.1
Kathy Rogers, Rockwell International/SSSD

Experience with the CAIS D.2.4.1
Michael F. Tighe, Intermetrics, Inc.

The CAIS 2 Project D.2.5.1
Richard Thall, SofTech, Inc.
Sue LeGrand, SofTech, Inc.

Transportability, Distributability, and

Rehosting Experience with a Kernel Operating

System Interface Set D.2.6.1
F.C. Blumberg, A. Reedy, and E. Yodis,
Planning Research Corporation

SESSION D.3 - RUN TIME ISSUES I

Constructing A Working Taxonomy of Functional

Ada Software Components for Real-Time

Embedded Application D.3.1.1
Robert J. Wallace, Research Triangle Institute

Visualizatlion, Design, and Verification of Ada

Tasking Using Timing Diagrams D.3.2.1
R.F. Vidale, Paul A. Szulewski, and J.B. Welss,
The Charles Stark Draper Laboratory

viil

o fen,
i R Ce e

‘\ TABLE OF CONTENTS (continued)
Event/Paper Page Number
Ada and Cyelic Runtime Scheduling D.3.3.1

Philir E. Hood, SofTech, Inc.

Choosing a Software Development Methodology
for Real Time Ada Applications D.3.4.1
James V. Withey, Intermetrics, Inc.

Implementation of an Ada Real-Time Executive -

A Case Study D.3.5.1
James D. Laird, Bruce A. Burton, and Mary Koppes,
Intermetrics, Inec.

Real-Time Ada in a MC68XXX System D.3.6.1
Dick Naedel, Intellimac

SESSION D.4 -~ LIFE CYCLE ISSUES II (Design)

Object Or{ented Development D.4.1.1
Donald G. Firesmith, Magnavox Electronic Systems Co.
‘ Integrating Automated Structured Analysis and
Design with Ada Programming oupport Environments D.4.2.1

Andy Simmons, Cadre Technologies Inc.
Alan Hecht, Cadre Technologies Inc.

A Software Development Environment

Utilizing PAMELA D.4.3.1
R.L. Flick, Westinghouse D&EC
R.W. Comnelly, Westinghouse D&EC

The Bencfits of Bottom-Up Design D.4.4.1
Gregory McFarland, Grumman Corporation,
Data Systems Division

The Ada Object-Oriented Approach D.4.5.1
Steve Nies, Harris Government Systems Division
Ray Robinson, Harris Government Systems Division

Towards a General Object-Oriented Software

Development Methodology D.4,6.1
Ed Seidewitz, Goddard Space Flight Center
Mike Stark, Goddard Space Flight Center

SESSION D.S5 - CAIS PANEL D.5.1
Chafr: Ed Chevers, NASA Johnson Space Center

ix

TABLE OF CONTENTS (continued)

Event/Paper Page Number
SESSION E.1 - REUSABILITY

Some Design Constraints Required for the Assembly

of Software Components: The Incorporation of

Atomic Abstract Types into Generically Structured

Abstract Types E.1.1.1
Charles S. Johnson, Productivity Research Corporation

Certification of Ada Parts for Reuse E.1.2,1
G.A. Hansen, General Dynamics, Data Systems Division

Development of an Ada Package Library E.1.3.1
Bruce Burton, Intermetrics, Inc.
Michael Broido, Intermetrics, Inc.

A Design for a Reusable Ada Library E.1.4.1
John D. Litke, Grumman Data Systems Corporation

Designing Generics for Compatibility and Reusability E.1.5.1
D. Douglas Smith, Dalmn Victor Singer

Considerations for the Design of Ada Reusable Packages E.1.6.1
Norman S. Nise, Rockwell International Corporation
Chuck Giffin, Rockwell International Corporation

SESSION E.2 - MISSION CRITICAL ISSUES

Transparent Ada Rendezvous in a Fault Tolerant
Distributed System E.2.1.1
Roger Racine, The Charles Stark Draper Laboratory

Lessons Learned in Creating Spacecraft Computer

Systems: Implications for Using Ada for the

Space Station E.2.2.1
James E. Tomayko, Software Engineering Institute

Using Ada -- The Deeper Challenges E.2.3.1
David A. Feinberg, Boeing Aerospace Company

An Ada Implementatlon for Fault Detection,

Isolation and Reconfiguration Using a

Fault-Tolerant Processor E.2.4.1
Gregory L. Greeley, The Charles Stark Draper Laboratory

Vector, Matrix, Quaterion, Array, Ampersand Arithmetic
Packages: All HAL/S Functions, Implemented in Ada E.2.5.1
Allan Klumpp, Jet Propulsion Laboratory

TABLE OF CONTENTS (continued)

Event/Paper

Generic Ada Code in the NASA Space Station Command,
Control, and Communications Environment

Donald P. McDougall, Veda Inc.

Dr. Thomas E. Vollman, Veda Inc.

SESSION E.3 - RUN TIME II

Real-Ti{me Ada
Pat Rogers, University of Houston-Clear Lake
Charles W, McKay, University of Houston-Clear Lake

RT BUILD: An Expert Programmer for Implementing
and Simulating Ada Real-Time Sof tware
Larry Lehman, Steve Houtchens, Massoud ‘Navab,
and Sunil C. Shah, Integrated Systems Inc.

A Muylt{computer and Real-Time Ada Environment
Ray Naeini, Flexible Computer Corporation

Run-Time Implementation Issues for Real-Time
Embedded Ada
Ruth Maule, Boeling Aerospace Company

Interesting Viewpoints to Those Who Will
Put Ada Into Practice
Arne Carlsson, Saab Space AB

Comparing Host and Target Environments for
Distributed Ada Programs
Mark C. Paulk, System Development Corporation

SESSION E.4 - EXPERT SYSTEMS

An Evaluation of Ada for AI Applications
David Wallace, Intermetrics, Inc.

Intelligent User Interface Concept of Space Station
Kathleen Gilroy, Software Productivity Solutfons, Inc.

An Ada Inference Engine for Expert Systems
David B. LaVallee, Ford Aerospace

An Approach to Know.edge Structuring for Advanced
Phases of the Technical and Management Information
System
H.T. Goranson, American Systems Fngineering Corporation

xi

Page Number

E.2.6.1

™
o

k‘"**”"’f' T T) IIII_ﬁi« |_—7 _ w . g

TABLE OF CONTENTS (continued)

Event/Paper

Ada and Knowledge-Based Systems: A Prototype
Combining the Best of Both Worlds
David C. Bauer, McDonnell-Douglas Astronautics Company

Using Ada to Implement the Operations Management
System as a Community of Experts

SESSION F.1 - AVIONICS/SIMULATION

Applying Ada to Beech Starship Avionics
David Funk, Rockwell International

Simulation of the Space Station Information
System in Ada
James R. Spiegel, Ford Aerospace

Designing with Ada for Satellite Simulation:
A Case Study
Victor E. Church, Computer Sciences Corporation

Modeling, Simulation, and Control for a
Cryogenic Fluid Management Facility
Max Turner, University of Houston-Clear Lake
Paul Van Buskirk, Lockheed

SESSION F.2 - WEIZMANN INSTITUTE RESEARCH REPORT

Intertask Communication in Ada: A Bus
Interface Solution
Flavia Rosemberg, Smil Ruhman, A. Pnuell,
Weizmann Institute Rehovoi, Israel

SESSION F.3 - LANGUAGE ISSUES

Verifying Performance Requirements
Dr. Joe Cross, Sperry Corporation

The Computerizatlion of Programming Ada -
Lessons Learned
Dennis Struble, Intermetrics, Inc.

A Small Evaluation Sufte for Ada Compilers
Randy Wilde, Century Computing
Daniel Roy, Century Computing

Paranola - Ada: A Dlagnostic Program to

Evaluate Ada Floating-Point Ari{ithmetic
Chris Hjermstad, Package-Architects, Inc.

x1t

Page Number

E.4.5.1

TABLE OF CONTENTS (continued)

Event/Paper

Interfacing Ada and Other Languages
Paul Baffes, Intermetrics, Inc.
Brian West, Intermetrics, Inc.

Deferred Binding in the Ada Software
Support Environment
Paul Brown, University of Houston-Clear Lake

Sof tware Issues Involved in Code Translation

of C to Ada
Robert Hooi, University of Houston-Clear Lake
Joseph Glarratano, University of Houston-Clear Lake

SESSION F.4 - LIFE CYCLE ISSUES III

Rehosting and Retargeting an Ada Compiler
A Design Study
Ray Robinson, Harris Government Systems Sector

Considerations for the Task Management
Function of the NASA Space Station Fligat
Elements' Operating System Sof tuare
Larry Fishtahler, Computer Scilences Corporation

The TAVERNS Emulator: An Ada Simulation of the
Space Station Data Communications Network and
Software Development Environment

Dr. Norman R. Howes, Lockheed

A Study of the Use of Abstract Types for the
Representation of Engineering Uaits in
Integration and Test Applications

Charles S. Johnson, Productivity Research Corporation

Rdes{gn: A Data Dictionary with Relatfonal Database
Design Capabilities in Ada
Anthony Lekkos, Universfty of Houston-Clear Lake
Ting~yin Teresa Kwok, University of Houston-Clear Lake

Ah! Help: A Generalized On-Line Help Facility
Anthony Lekkos, Wong Nai Yu, Charmaine Mantooth,
and Alex Soulahakil, University of Houston-Clear Lake

SESSION F.5 - REUSABILITY PANEL
Chair: Delores S. Moorehead, Intermetrics, Inc.

SESSION F.6 - DISTRIBUTED ADA PANEL

Chafr: Roger Racine, The Charles Stark Draper Laboratory

xiit

Page Number

F.3.5.1

ABLE OF CONTENTS (continued)

Event/Paper Page Number
SESSION G.1 - SOFTWARE TOOLS

Application and Systems Software in Ada:
Development Experiences G.1.1.1
Pamela Crowley, Computer Representative, Iuc.

Software Development: The PRODOC Environment G.1.2.1
and Assocfated Methodology
Alice B. Scandura, Scandura Intelligent Systems

A Database Management Capability for Ada G.1.3.1
Stephen Fox, Computer Corporation of America
Arvola Chan, Computer Corporation of America

SESSION G.Z - LANGUAGE ISSUES Il

A Study of Issues in Extending the MAPSE G.2.1.1
Robert Charette, SofTech, Inc.
David Auty, ¢ofTech, Inc.

Ada Structure Design Language G.2.2.1
Lufti Chedrawi. Computer Science Corporation

Extending Ada for Artificial Intelligence
Applications G.2.3.1
Gilbert Marlowe, Rockwell (RSOC)

SESSION G.3 - RUN TIME ISSUES III

Space Station Ada Runtime Support for
Nested Atomic Actions G.3.1.1
Edward J. Monteiro, McDonnell-Douglas Astronautics Co.

Reusable Software Parts on a Semi-Abstract

Data Type G.3.2.1
Sandy Cohen and Dan McNicol, McDonnell-Douglas
Astronautics Co.

Informal report by the ARTEWG G.3.3.1
Mike Kamrad, Honeywell Systems and Research Center

xiv

i 1 o e PPV s ——

.\ TABLE OF CONTENTS (continued)

Event/Paper Page Number
SESSION G.4 - COMPUTERS FOR ADA (Informal Presentations) G.4.1

Language Directed Machine
Lawrence Greenspan, Sanders Associates
Ronald Singletary, Sanders Associates

Ada Port to the ELXSI System
Ralph Merkle, ELXSI

Message Passing Concurrent Processing Architecture
Tony Anderson, Intel Scientific Computers

SESSION G.5 - DIALOG WITH THE NASA SOFTWARE WORKING GROUP G.5.1
Chair: Robert Nelson, Goddard SFC

XV

SESSION A OPENING PLENARY SESSION
Nassau Bay Hilton Hotel
Monday Morning 9:00 to 12:00

Welcome to the Conference
Jack Garman, Director
Mission Support
NASA Lyndon B. Johnson Space Center

Welcome to the Johnson Space Center
Jess Moore, Director
NASA Lyndon B. Johnson Space Center

Welcome to the University of Houston-Clear Lake
Dr. E. T. Dickerson, Dean
Sciences and Technologies

Welcome by the NASA Space Station Program Office

Ada Joint Program Office
Virginia Castor, Director

Space Station Computing

Ada International
Commission of European Countries
Rudy Meijer is being represented by
Pierre Vielcanet
Informatique International
Toulouse, France

NASA/Johnson Space Center International Office
William Rice

MONDAY EVENING SESSION
University of Houston-Clear Lake Bayou Building

Reception

Keynote Speech - Software Engineering
Dr. John Manley, Director
Software Engineering Institute
Carnegie Mellon University
Pittsburg, PA

A.l

DEBUGGING TASKED ADA PROGRAMS

by

R.G. Fainter

Virginia Tech,

and ‘

T.E. Lindquist |
Arizona State University

Abstract

The applications for which Ada was developed require distributed implementations of the
language and extensive use of tasking facilities. Debugging and testing technology as it applies 10
parallel features of languages currently falls short of needs. Thus, the development of embedded
systems using Ada poses special challenges to the software engineer. Techniques for distributing
Ada programs, support for simulating distributed target machines, testing facilities for tasked
programs, and debugging support applicable to simulated and to real targets all need to be
addressed. This paper presents a technique for debugging Ada programs that use tasking and it
describes a debugger, called AdaTAD, to support the technique. The debugging technique is
presented together with the user interface to AdaTAD. The component of AdaTAD that monitors
and controls communication among tasks has been designed in Ada and is presented through an

example with a simple tasked program.

Bl 1.

1. INTRODUCTION

Because of the distributed nature of the Space Station and its unmanned platforms, software
that the Space Station uses must be highly distributed. This implies, therefore, that the task will be
used extensively in Space Station software. Because of the difficulties associated with locating
errors in tasked programs and because of the cost of programming errors in Space Station
software, tools to aid in the production of correct programs must be developed. Such a tool 1s
currently under development and is described in this paper.

One view of program testing [1] indicates that a program has been tested when every
statement in the program has been executed at least once and every possible outcome of each
program predicate has occurred at least once. Considerable literature addressing techniques for
testing software reflects a view of testing that is consistent with this definition. Although this
definition does not naturally extent to tasked programs, it is indicative of the view that testing
occurs late in software development and is oriented toward validation.

In contrast, debuggers have traditionally had utility in earlier software development activities.
Accordingly, debuggers are used as automated support for locating errors and determining what is
needed to correct errors. Ideally, testing is used to identify the presence of errors and debuggers to
support location and correction. When tasking facilities are included in a language, however. the
software designer is left without good testing techniques, and debugging must enter into the
process of identifying the existence of errors.

Helmbold (2] suggests that "Debuggers for parallel programs have to be more than passive
information gatherers--they should automatically detect errors”. When tasking errors directly
depend on the semantics of the language, a debugger is able to actively aid in detecting ervors.
More commeoenly, errors are also dependent on the specific logic of task interaction and the usc of
the language.To take an active role in identifying this more complex type of errors, the debugger
must include facilities to analyze the logic of the program. Helmbold distinguishes types of tasking
errors as "Task Sequencing Errors” and "Deadness”. AdaTAD provides task information that may
be used to detect either type of tasking errors, although it does not actively detect errors.

AdaTAD is a debugger whose capabilities are specific to the problems of concurrent
programs. The name AdaTAD is an acronym for Ada Task Debugger. Most debuggers allow the
user to trace the execution of a program, but the pro yram remains under control of the operating

system. AdaTAD differs from other debuggers by exzrcising direct control over the execution of a

Debugging Tasks with AdaTAD B.1.1.2

program's tasks. The user is able to specify which tasks run when, at what rate and for how long.
Of course, to emulate more closely the environment in which a program is to execute, the user may
defer these decisions to the runtime system, and simply monitor task synchronization and
communication. AdaTAD combines typical debugging facilities with others specific to supporting
the Ada constructs for rendezvous.

Space Station software may be configured in many different ways. One possible scenurio
might involve an Ada program with tasks running on an Earth-based computer, on one or more
computers aboard the main station and on computers on one or more unmanned platforms,
AdaTAD has the capability to allow the software engineer to debug such a program in at least two
different ways. Firstly, the software engineer may construct, solely on ground based computers,
an environment similar to that which exists on the Space Station for debugging purposcs.
Secondly, because AdaTAD itself may be distributed, the program may be run under AdaTAD in
the actual Space Station environment. This allows the software engineer a great deal of flexibiliny
in exercising the program under a variety of conditions.

A method for debugging tasked Ada programs and AdaTAD are presented jointly in this
paper. Our approach to task debugging centers on removing task errors from three successive
levels of consideration. Errors within tasks, which are principally independent of other tasks. are
first addressed. Next, the communication and synchronization structure among tasks is addressed.
and finally, any application specific concerns are addressed. AdaTAD, as it relates to these levels.
is discussed in the following three sections together with a discussion of our approach to
debugging. A subsequent section addresses the design of AdaTAD. Ada is used in the design 1o
allow increased effectiveness on multiprocessor applications, and to show how the rendezvous
constructs can be used to control the execution of tasked Ada programs. An Ada implementation ol

AdaTAD would require emitting special code from the compiler for synchronization with AduTAD

2. LOGIC ERRORS WITHIN A TASK

The first level of usage for the debugger is to address logic errors within each of a program’s
tasks. These errors are exclusive of intertask communication and synchronization. Removing
them is synonomous to removing errors detected during unit testing of software. At this level. we
assume that interactions with other tasks are correct and examine the activities of the task itself,
Testing and debugging at this stage considers a piece of software in absence of all elements of its

environment except any procedures or functions it calls. For example, a task may use information

Debugging Tasks with AdaTAD B.11.3

ONIQINAL PACE 'S
OF POOR QUALITY

obtained from other tasks to retrieve and update information in a database. Task logic to perform
operations on the database is considered, at this level, exclusive of synchronization with other
tasks.

AdaTAD facilities are used in conjunction with a testing strategy in which some form of code
analysis may be performed. AdaTAD is designed to aid in executing test cases and in removing
any errors subsequently found.

2.1 User's View of AdaTAD

AdaTAD provides many facilities which are common to source level debuggers in addition to
those specific to tasks. After introducing the manner in which AdaTAD includes common
functions, facilities specific to removing logic errors from tasks are presented.

Command Entry

‘ In accordance with the findings of Wixon [3), AdaTAD is designed to use command driven
user input instead of either a menu or iconic input. Commands exist to control the initiation,
configuration, and completion of an AdaTAD session as well as to control the execution of the task
being debugged. Arguments to commands are entered as parameters to the command line itself.
Each task has a keyboard assigned to it for interactive input. When a task is the current task its
keyboard is the physical terminal to which the task has been assigned.

Information Display

Since so much information is made available to the user of AdaTAD, a well engincered
display is critical. We have designed an interface that combines textual and graphical status
information in a windowing framework. The concept of windowing has recently received much
attention. Windows allow a process to assume that it has a dedicated output device, independent of
whether the window is being viewed. Assignment of screen geography can vary dynamically
under user control to allow variable presentation of information.

The AdaTAD display consists of a set of task windows and a task interaction status display.
‘The user may configure windows on the screen by using the WINDOW DEFINITION
command. Figure | shows a task window and the panes that are included (the task interaction

.smrus display is presented in the next section). The panes display information about the current

Debugging Tasks with AdaTAD B.1.1.4

ORIGINAL PaCE
OF POGR QUALITY

execution state of the task, information on designated variables, the source code context and task
output.

AdaTAD control commands manage the appearance of the debugger to the user and perform
basic initiation and termination of users programs. The commands include:

EXECUTE --initiate program and enable execution
DEFINE_WINDOW --specify size and location of a window
200M --alter the size of a window
CURRENT_TASK --task to which taskless commands apply
ASSIGN --associate i/o device with a task
TERMINATE --complete the interactive session

Although these commands are not specific to a particular task, they are needed in tailoring u
specific debugging session for logic errors.

Task Name: Buf_control CE - integer, local, 0
Execution Mode: NORMAL
Breakpoints at: LAB
‘ Execution Information Data Information
-> Select
when CE>0
accept INSERT (X : in out ELEMENT) do
CE :=CE + 2;
Source Code Context Display
Task Qutput Area

Figure 1. Task Window Format.

Task Execution Information and Control

Debugging Tasks with AdaTAD B.1.¢.5

Two breakpoint facilites are provided for controlling the execution of statements within a
task. Assertion breakpoints may be placed within the a task by adding an ASSERT statement to
the program, and unconditional breakpoints may be associated with any statement of a task. Since
several allocated tasks may have the same task body, breakpoints cause breaks to occur in all tasks
having the body.

Four modes of task execution are provided to accommodate various debugging techniques.

NORMAL --execute until encountering break
SINGLE STEP --user initiated statement execution
TIMED --€Xecute statements at a given rate
WAIT --suspend task execution

When a task halts execution at a true or unconditional breakpoint, the task is placed in a
WAIT mode of execution. Execution is resumed by explicitly placing the task in another execution
mode (NORMAL, SINGLE_STEP, or TIMED).

Examination of Data.

AdaTAD provides facilities for viewing or altering the values of program objects by the
object’s source code name. If tasks communicate via shared variables, then AdaTAD aids in

detecting any attempt to violate the assumptions described in section 9.11 of the Ada Language
Reference Manual {4].

2.2 Using AdaTAD to Remove Logic Errors

Testing and debugging the logic errors within tasks can best be done by removing the
influence exerted by the task’s environment. The environment must be specified by the test case
and controlled by the debugger. All interactions with other tasks, such as entry calls to the tested
task, accepts of calls made by the tested task, or the use of shared variables are controlled during
testing and debugging by AdaTAD stub facilities.

The test cases for this phase can be characterized as including input, environment and
expected results. When the task is initiated in a state satisfying the input condition and executed in
the environment specified then it should exhibit the expected results. The input condition describes

Debugging Tasks with AdaTAD B.1.§.6

the values of inputs to the task. These may include the initial state of a database used by the task or
of objects obtained through input.

The environment specification must describe the necessary interactions with other tasks to
carry out a test case. When selective waits or conditional or timed entry calls are contained in the
task, the specification indicates specific paths through the constructs relevant to the test. For
example, a test case that is to examine a specific delay alternative must specify in its environment
section conditions causing that delay to be executed. Further, to obtain the information needed for
a test case it may be necessary to specify which task is to call a specific entry to the tested task.

The anticipated results of executing a test case may not be as simply expressed as an output
condition to be true when execution completes. Tasks may execute indefinitely, may terminate in
synchronization with others, or may transmit their results to other tasks through entry parameiers.
Accordingly, the anticipated result may be a condition to be true at a specific point during execution
of the task (possibly within an iteration).

AdaTAD Support

AdaTAD facilities are used to execute test cases, and debugging can be done in conjunction
with testing if needed. Facilities supporting the execution of test cases can be compared to those of
other debuggers for handling procedure stubs. In AdaTAD, these facilites include commands to:

1. Cause a terminate condition to evaluate true,

2. Provide a dummy entry call to a task with specific
arguments,

3. Cause an entry call to another task to be accepted and
out parameters from that call to be set,

4. Deterministically select an alternative in a

nondeterministic selective wait,
5. Selectively satisfy durations on delay statements.

3. SYNCHRONIZATION AMONG TASKS

After checking the logic within a task, the communication and synchronization amony tushs
is considered. This step is analogous to integration testing in that the cooperation among possibly
several tasks is addressed. Data flow and control flow through tasks of the program are obscrved
at this level of testing and debugging. From the perspective of a single task, this level checks, in a
rudimentary manner, the task’s tasking environment. Subtle timin interactions and interactions

with the operating environment are left to the final level of cio! g,

Debugging Tasks with AdaTAD B1L.7

JGINRL PATE
OF POOR QUALITY

The scenario for testing and debugging follows the same approach as with task logic. Test
cases dre identified using source code analysis. Test cases are run using AdaTAD support, and
errors are located and removed using AdaTAD debugging facilities. Test cases focus on task
interaction. Input conditions and expected results are included, but no specific information
describing task execution constraints is included.

3.1 Task Interaction Status

AdaTAD's Task Interaction Status window depicts the state of rendezvous and consequently
is particularly useful for synchronization testing. Within the window a graph is used to represent
tasks of the program and relationships between tasks. Each task has a corresponding node in the
graph, and relationships such as "depends on" and "is in rendezvous with" are depicted by
directed edges from one task to another. Figure 2 shows a hypothetical program unit, called T1, at
some point of execution, and Figure 3 is the legend for the task status area. T1 has four
subordinate tasks, T2, T3, T4 and TS. Each of these subordinates has an underlying task type;
A2 for T2, TS and A3 for T3, T4. Arcs with solid arrow heads indicate the dependent relation
among tasks. Thus in this example, T1 has caused initiation of T2 and TS. Rendezvous and
communication status is conveyed through double-line arcs. The arc from T2 to TS, with shaded
lines, indicates that T2 is waiting at an unaccepted entry call to TS's entry E1. EI has a single
input (IN) parameter, and for this call A is the argument.

Debugging Tasks with AdaTAD B.1,i .8

ORIGINAL PAGE 1S
OF POOR QUALITY

~@

Program Unit

Task [ateraction Status Window

The large shaded arrowheads (without bodies) pointing at TS indicate the task will not be
immediately accepting the call to EI. TS is waiting at a selective-wait with three open accepts
(12, E3, E4). The large solid arc from T3 to T4 indicates that these two tasks are currently in
rendezvous. T3 is the calling task and T4 is the accepting task, as indicated by the arrow-head.

For entry ES the argument is B, which is an IN OUT parameter.

Dcbugging Tasks with AdaTAD B.1.1.9
DNGINAL page 15
OF POOR QUALITY

T1 > T2 Task dependence -- T2 depends on TI

Task name [and its type]

4P,
I gy
LR n——) Y I V.

E1§1’1 T2 T2 has an open accept for EI(P)

4—A—>
T1 E__—'IID T2 Tl and T2 are in rendezvous at El(A)

T1 has queued a call to T2.EI(A)

Shadings for Execution Modes

O Normal Execution

Waiting at statement SI

At S1 Suspended

At S1 in Delay

At S1 after Single Step Throttled n
sec/stmt

Legend

Figure 3. Legend for the task interaction status display

The main program unit, T1, is currently in a WAIT state of execution, as indicated by the
shaded task node for T1. The small s in the lower right of the task node indicates the task is

Debugging Tasks with AdaTAD B.1.1.10

ORIINIL PACE "
OF ®OCR QUALIT

waiting because it was suspended.

3.2 Execution Control For Checking Interactions

The displays generated by AdaTAD for checking task interactions are the same as those for
logic checking within a task, but the capabilities available to the user differ. When checking task
interactions, AdaTAD does not allow the user to:

1. Provide a dummy entry call to another task, or
2. Provide a dummy accept of an outstanding entry call.

Additional facilites are provided to specifically aid in debugging task interactions. These
include:

1. Break at rendezvous beginning/completion,
2. Examine the calling queue for an entry,

3. Reorder the calling queue for an entry

4. Examine/alter arguments to an entry call.

Rendezvous breakpoints provide a means for control to return to the user at the boundaries of
a rendezvous. When both tasks reach the synchronization point, the user may need to examine
assertions, arguments, or results to determine correct communication between tasks. Rendezvous
breakpoints may be associated with either pairs of tasks or with entries within a task. In one
situation, the user may be interested in examining communication between tasks T1 and T2 cuch
time they rendezvous, independ of the entry at which rendezvous occurs. In another situation, a
user may need to know parameter information each time that a specific entry within a task in called,
independent of what task is calling.

4. APPLICATION SPECIFIC USES OF ADATAD

The final stage of debugging considers the operating environment in which the tasks must
cxeeute. For an embedded system, thic may include operating within a set of heterogencous

processors, each with different resources and capabilities. Testing and debugging at this level is

Dcbugging Tasks with AdaTAD B.1.4.11

ORIGINAL PAGE 18
OF POOR QUALITY

often accomplished with a simulation of the operating environment. While specific tools are
necessary to support this activity, AdaTAD provides facilities that are useful in a general manner to
the problem of addressing the operating environment.

The problems that may arise in this phase of testing include timing inconsistencies among
tasks, space requirements of a task, or resource contention caused by task interaction. Device
interactions for special purpose input or output may be one cause. Another cause may be
constraints imposed on the program by task distribution or the interaction between the task
scheduling strategy and the operating environment.

AdaTAD provides facilities that allow the user to monitor program elements that will reveal
these environment related problems. Ultimately, we recognize that the program under observation
may to some extent be perturbed by the debugger. Nonetheless, a certain amount of debugging can
be useful in this phase. To a large degree, testing technology is not appropriate for revealing
application specific errors. This is an area in which ad hoc stress testing has been most
successfully applied.

The capabilities that support this aspect of testing include:

1. Call Queue Display,
Entry Call Frequency,
Accept Entry Frequency,
Statement Execution Frequency,

o WP

Object Update Frequency.

" .1e user can request that certain entry call queues be displayed automatically when modified.
This provides a monitoring ability for a service rendezvous that is used by several tasks. The
frequency displays allow the user to selectively obtain information that will show the contention
points in a program. Entry czll frequency may be obtained in two forms, entry call by any task and
entry call by a named task. Statement and Object frequency information is useful in determining the
dynamic space requirements of a task. One can observe executions of allocator statements or
updates to objects detailing the size of dynamic structures. Although these facilities do not directly
support monitoring interactions with the external environment, often internal objects or statements
reflect their status.

S. THE DESIGN OF ADATAD

As with any debugger, AdaTAD requires specific modifications to the compiler and linker.
To allow the debugger itself to be designed and implemented in Ada, source code changes are made
to provide synchronization through AdaTAD entries. AdaTAD is, itself, a set of Ada tasks. There

Debugging Tasks with AdaTAD B.1.4.12

[,

Ry
T O A g i g .

- .- r o a———r——

are four major cooperating tasks including:

1. AdaTAD Coordinator,

2. Data Base Monitor,

3. Command Processor, and
4. Terminal Communicator.

There are also two arrays of tasks, including:

1. Logical Processor Tasks and
2. Terminal Drivers.

Additionally, there is a task to handle input/output between the user's program and
non-terminal input/output devices. Figure 4 is a diagram of the overall structure of AdaTAD.
AdaTAD tasks communicate via the rendezvous and a shared variable. The data base stores
. execution information about the user's tasks. AdaTAD effectively makes each user task purt of a
logical processor task, which controls its exeuction. ‘Ine terminal communicator is responsible for
receiving user commands and updating t 'k displays. The data base monitor provides operations
that both synchronize access to the data and perform data storage and retrieval functions. The
coordinator mediates communication among logical processors whose user tasks arc

synchronizing. The coordinator is also responsible for directing parsed user commands to the
appropriate logical processor.

Debugging Tasks with AdaTAD B.1.1.13

700} ¢—p < P pata Base
Monitor
Terminal
Terminal Task
Drivers 1TD1 [€— communicator
TDO-TDn Task
cen Command
Processor
TOn |[¢—> Task
Data Base

Shared
Variable

Davice Driver
for Other P AdaTAD
Devices Coordinator Task
>
$ '
LPO LP1 LP2 e LPn

Logical Processor
Tasks - LP1-LPn

Figure 4. Task structure of AdaTAD.

5.1 Design of the Logical Processors

Logical processors are the most complex tasks in AdaTAD, vecause they monitor and control
the synchronization among user tasks. Synchronization with other AdaTAD tasks is uscd to
communicate the current state of execution to the data base maintained by the Coordinator. Logical
processors have four entries for receiving input from the command interpreter, for servicing
rendezvous requests from user tasks, for notifying rendezvous completion from servicing tasks,
and for notifying task termination from other logical processors. Three tasks are defined within

Debugging Tasks with AdaTAD B.1.1.14

T W A e

each Logical Processor. The EXECUTOR task directly controls environment for the user task, the
TRANSMITTER task serves as a funnel for messages to the coordinator, and the
EXECUTION_AREA_MONITOR maintains the variables which reflect the current execution state
of the user task. Although the presence of three tasks complicates the Logical Processor, it allows
for maximal parallelism in the execution of the Logical Processor, and it minimizes the time spent
by the user task in synchronization with AdaTAD.

Receive_User_Command

Through this entry, the logical processor is called by the coordinator when a user command
is to be executed by the logical processor. A case statement within this entry selects the proper
code to implement the command. With only two exceptions, the implementation of the commands
at this level involve setting values in the execution data base. For example, if the user wants to

change the execution state of a task, the command is channeled to the appropriate logical processor
and the execution state variable is changed.

Receive_Rendezvous_Completion.

When a rendezvous between two user tasks completes, the calling task must be released for
further execution. To do this, the AdaTAD coordinator calls Receive_Rendezvous_Request. The
call indicates that a rendezvous requested by the task running on the logical processor has been
completed. The entry updates the local data base so that the user task can continue execution. Any

arguments which were changed by the rendezvous exist in the argument list and are copied to the
appropriate area.

The Executor Task

This task directly controls execution of the user's task. The compilation system modifics the
user’s task to physically nest it within the Executor. The Executor has one entry which is called
when another user task has issurd an entry call to this task. The call is forwarded 1o the Exccutor
by the logical processor's Receive_Rendezvous_Request entry when the coordinator sends an entry
call. The compilation system converts rendezvous code into procedures that may be called 1o
perform the rendezvous code. Thus, when the user task is ready to accept the call, the appropriate
procedure is called.

Debugging Tasks with AdaTAD B.1.1.15

ORIGINAL PAGE 1S
OF POOR QUALITY

Transmitter Task

The Transmitter sends messages to the AdaTAD coordinator. It is called by the user's task to
request an input/output service or to inform the coordinator that a rendezvous has begun or
completed. Transmitter is called by the execution area monitor to send the current state of the data
base to the coordinator.

Execution Area Monitor Task

Since the execution data base is a shared variable that must be accessed by the Executor, the
Transmitter and the Logical Processor itself, synchronization to the information is provided by the
Execution_Area_Monitor. Tasks requiring information from the data base get the information by

making an entry call to the monitor. The task services the following entries.
Sing_step_rel: Called by the logical processor after the coordinator has signaled
that the user has pressed a key to cause execution of the next statement in single
step mode. The entry enables execution of the next statement.
Set_bk_state: Called by the Logical Processor to enable or disable breakpoint
checking.
Set_ex_md: Called by the Logical Processor whenever the execution mode is to
“be changed.
Set_ex_rt: Called by the Logical Processor to set the rate for timed execution.
Set_timed: Called by the Logical Processor to enter timed execution mode.
Examme exe: Called by the statement prologue to see whether statement
execution is enabled.

When there are no outstanding entry calls to the monitor, the current execution mode is
determined and the appropriate action is taken. If the execution mode is TIMED, the monitor
determines whether it is time to execute the next statement.

5.2 The Coordinator Task

The AdaTAD coordinator mediates communication among AdaTAD tasks. When user tasks
rendezvous, the coordinator handles communication among their Logical Processors. This
mediation occurs when a rendezvous is requested, when a rendezvous completes and when a
rendezvous begins. The Coordinator also mediates input/output requests for user tasks. To allow
all appropriate information regarding the execution status of tasks, all communication with the
underlying operating system must be recorded. This is done when a user's task requests service

and when control returns from the operating system facility. Two further functions of the

Debugging Tasks with AdaTAD B.1.1.16

ORJ ‘52\ 5k N‘, ¢-' 3
OF FOOR QUALITY

R R T T TRV .

Coordinator are to dispatch AdaTAD user commands to the appropriate Logical Processor and to
collect status information for data base modifications. The coordinator interactively accepts entry
calls to its entries in the order in which they arrive. We now describe the Coordinator in terms of
its entries,

Rendezvous_request.

When one user task requests a rendezvous with another, the requesting task's Logical
Processor makes a call to this entry of the Coordinator to initiate the rendezvous. The coordinator,
in executing the call, looks up the Logical Processor for the called task. The name of the called task
is taken from a descriptor list which also includes parameters for the call. Before making an entry
call to the Logical Processor of the called task, Coordinator sets an indicator to show that the calling
task is awaiting synchronization.

Rendezvous_begin,

When a rendezvous begins, the called task calls this entry with the names of the two
synchronized tasks. The entry updates the synchronization information for the two tasks. It ¢lears
the waiting indicator, sets the is_synchronized indicator and records the names of the culled
and calling tasks in the synchronization data base.

Rendezvous_completion.

When the called task completes its rendezvous code, its logical procesor calls this entry.
This occurs when the servicing task either terminates or encounters the end of the synchronized
code of an accept statement. The entry updates the synchronization data base to reflect the
rendezvous has completed. Further, an entry call is made to the logical processor running the
served task so it may continue execution. The single parameter for this entry is the name of the task
which has been served.

Data_base_update.

Each logical processor has local data that controls the execution of the user's task. When that
data changes, the central data base is periodically informed through calls to this entry by Logical

Debugging Tasks with AdaTAD B.1.4.17

ORIGINAL PAGE IS
OF POOR QUALITY

Processors. Parameters convey the task name and its execution state. A local procedure, which the
entry uses to perform the update, blocks the data base monitor task from looking at the data base
while doing the update.

§.3 Data Base Monitor Task

The data base monitor is used to implement exclusive modification of the data base and to
drive terminal updates of task status. An AdaTAD task acquires exclusive access to the data base
through the Monitor's Hold and Release entries (P and V). For example, Hold is called by the
Coordinator prior to making data base modifications required by a user command. After
completing the modifications, Release is called.

The current state of the data base is transmitted to the Terminal Communicator task for
display when no other task is modifying the data base. This is accomplished with an else clause on
the selective wait for the Monitor's Hold entry. If no AdaTAD task has queued a call to Hold when
the selective wait is encountered, then the else clause is executed and information is sent to the

. Terminal Communicator.

5.4 The Command Processor Task

The Command Processor analyzes the user commands. When a command is successfully
parsed, it is dispatched, along with its parameters, to the AdaTAD Coordinator for execution. Even
commands which affect information display are executed by the Coordinator. If a command is
erroneous, nothing is sent to the Coordinator, and an error message is sent back to the Terminal
Communicator. The internal procedure Analyze_Command does the lexical and syntactic analysis
of the command.

Parse is the only entry into the Command Processor. Parse is called by the Terminal
Communicator when unsolicited input occurs on a terminal.

5.5 The Terminal Communicator Task

A task's terminal input and output is controlled by the logical processor, through the
mediation of the Terminal Communicator. The Terminal Communicator also provides the
intelligence for display of the AdaTAD data base. The Terminal Communicator manages the

. windowing capability of AdaTAD. The five entries in this task receive information from the

Debugging Tasks with AdaTAD B.1.1.18

ORIGINAL PAGE IS
OF POOR QUALITY.

WYL SR A Ty AN Ay P AR T Wmein s e

Coordinator, the terminals, the Data Base Monitor and the Command Processor.
From_Terminal and From_Coordinator

The Terminal Communicator task has two accept statements for the From_Terminal entry.
The first handles unsolicited input from a terminal. Assuming that unsolicited input is a command,
the first accept receives an information string and passes that string along to the Command
Processor. For example, when the user enters the string "set wait", the Terminal Communicator
assumes that this is a command and sends it to the Command Processor.

The From_Coordinator entry is called by the Coordinator when a user task requires input or
output. We call this solicited input or output. The second accept for the From_Terminal entry is
used for input of solicited information. From_Terminal is accepted after accepting the
From_Coordinator entry. These entries are called when a user task has requested terminal input.

From_Command_Processor

This entry is called by the Command Processor when it has detected an error in a user
command. This entry displays the error message on the terminal from which the command was
entered.

5.6 The Terminal Drivers

The Terminal Drivers are an array of tasks that handle the transmission of data between the
physical terminals and the Terminal Communicator. The Terminal Driver has four entries and onc
internal task which has no entries.

The Output entry is called by the Terminal Communicator to write a string on a terminal. It
then calls the Output entry in the Terminal Driver. Output accepts the string and writes it on the
device through the appropriate Terminal Driver. The Input entry passes the string and the Termumal
Driver number to the Terminal Communicator.

Terminal_watcher

Internal to the Terminal Driver is a task whose sole job is to wait for an input string from the

terminal. When a string is received, as indicated by a terminal character, the task makes an entry

Debugging Tasks with AdaTAD B.1.1.19

call to the terminal driver's input entry, passing the string. The identify entry is called by the
Terminal Communicator as soon as the driver begins execution, to assign the driver a number,
which is used in all communication.

5.7 An Example of Synchronization Among User Tasks

Controlling the synchronization of user tasks is the most complex of actions that AdaTAD
performs. AdaTAD must intervene when a rendezvous request is made, when the rendezvous
begins, and again when the rendezvous ends. To keep track of these interactions, the compiler
converts user entry calls to calls of AdaTAD task entries. The compiler also generates code to
inform AdaTAD when a rendezvous actually starts and when it completes. In this manner,
AdaTAD can record the status of all user task synchronization. These actions occur whenever a
rendezvous request is made, but they are normally transparent to the user. The following
paragraphs describe what occurs in each case of AdaTAD intervention.

As an example of how AdaTAD controls execution, assume that two tasks (A and B) are
running. Assume that task A wants to make an entry call to task B's entry named E1. Since the
example is concerned with synchronization only, we assume that no data are passed during the
rendezvous. Assume further, task A is running on logical processor one and task B is running on
logical processor two.

Rendezvous Request

Task A has an entry call statement of the form B.E1. For this call, the compiler generates
code to produce an empty argument list (alist), which consists only of the head node. This node
names the calling task, the called task and the called entry. The compiler converts the statement
B.E1 into:

TRANSMITTER.SEND_RENDEZVQUS_REQUEST (alist);

The first action that takes place at execution time when task A is ready to make this
rendezvous is that the transmitter is invoked. The transmitter's send_rendezvous_request entry
accepts the call and immediately sets task A's execution mode to wait. Then, the transmitter
makes an entry call to the coordinator, passing the argument list along unchanged.

The request for rendezvous arrives at the coordinator's Rendezvous_Request entry. The

Debugging Tasks with AdaTAD B.1.1.20

VWAL

P —

coordinator looks in the argument list, to get the name of the called task, in this example, B, and
gets the number of the logical processor that is running the called task. The coordinator then looks
up the called entry name in the task data base. In this example, the entry is E1. The coordinator
uses the number to index the array of tasks which implement the logical processors. Next, the
coordinator makes an entry call to the Receive_Rendezvous_Request entry of the appropriate
logical processor. At this point, the synchronization information on the calling task, A, will be
updated to reflect that it is waiting for a rendezvous, and AdaTAD knows that a rendezvous request
has been made and that the calling task is in a wait state for that rendezvous. Further, the user
notices on the display that the calling task has entered a wait state awaiting a rendezvous. The
display also indicates the task being called, the state of the calling task and any other tasks awaiting
rendezvous.

When the Logical Processor accepts the rendezvous request, it passes the argument list to the
executor running task B. The Executor receives the request at its Rendezvous entry and extracts
the name of the called task and entry from the argument list. The name of the calling task (A) is
used later to tell the coordinator that the rendezvous is in progress. The name of the entry allows
the executor to request the proper entry into the user's task. If appropriate, the Executor calls the
procedure written by the compiler for the receiving task. This procedure decodes the argument list
and executes the entry call into the user's task. Assuming that the called task, B, is waiting at the
entry being called, the Executor's entry call is answered immediately and the user's task begins
execution,

Accepting a Rendezvous Request

The first thing that the user task's accept statement for E1 does is make an entry call to the
transmitter ~ with the name of the calling task. This entry call is to the
Send_Rendezvous_Beginning entry. The entry sets the called task's execution data base to retlect
that the called task is now runring, and then the coordinator is informed that the rendezvous is
beginning. The coordinator acts on this information by updating its synchronization information
data base. The user would now see that the rendezvous is in process in the display area. After the
user's task indicates that the rendezvous has been accepted, AdaTAD does not intervene. A user
observing the synchronized bechavior of the tasks would see that they obey the rules of
synchronization prescribed by Ada.

When the rendezvous between A and B is complete, the servicing task, B, encounters a call

to the Transmitter's entry Send_Rendezvous_Completion. The servicing task remains in a running

Debugging Tasks with AdaTAD B.11.21

ORIGINAL PAGE IS
OF POOR QUALITY

state until it reaches a point where it must wait for another rendezvous. The Transmitter sends a
message to the coordinator that the rendezvous is complete. As far as the servicing task’s logical
processor is concerned, the rendezvous is now over. However, there is still work for the
coordinator to do. Upon receiving notification of the termination of the rendezvous, the
coordinator updates its synchronization data base to reflect the end of the rendezvous. As far as the
coordinator is concerned, the rendezvous is now over, as indicated by calling
Receive_Rendezvous_Completion in the logical processor running the calling task. When the
calling task's logical processor receives this message, the calling task's execution mode is set to
run so it can proceed.

Wait for Synchronization

If the called task in the above scenario is not waiting at the entry, it would not immediately
inform the coordinator that the rendezvous had begun. Thus, the coordinator would reflect the
wait in its data base. The user would be able to see the called task executing elsewhere and the
calling task waiting.

6. SUMMARY

The problem of testing and debugging Ada programs that make extensive use of tasking
facilities has been addressed in this paper. We have considered an zpproach to debugging tasks
that is similar to the scenario in which software units are first considered. Following units,
interactions among units are addressed. Our approach recommends a three tier approach to
debugging tasked programs. The first tier considers the logic of tasks independent of their
interactions. The second tier addresses interactions among tasks that take place through rendezvous
and synchronized access to shared data. The final tier deals with application specific concerns.
Here, the subtlities of the interactions between a tasked program and its jperating environmaent are
considered.

We have presented the design of a debugger suitable for applying this methodology.
AdaTAD , which stands for Ada TAsk Debugger, includes facilities specific to each of the tiers.
When used in conjunction with a testing methodology, AdaTAD supports the execution of test
cases and the process of locating and fixing errors uncovered through testing. We have presented
the user interface to AdaTAD in conjunction with an explanation of the three tiered approach to
debugging tasked programs.

Debugging Tasks with AdaTAD B.1.) .22

e

The applications for which Ada is intended require a level of technology that currently
doesn't exist in today's Ada compilation systems. For embedded real-time systems, a compiler
must support the distribution of an Ada program across a set of possibly hetergeneous processors.
When such compilation systems appear, we will immediately be faced with the challenge of
demonstrating the reliability of Ada software. In addition to modifying existing testing and
debugging methodologies, special purpose tools such as AdaTAD will be required. To ease the
implementability of a system such as AdaTAD, we have designed the bulk of the system in Ada.
While an Ada design certainly compromises execution efficiency, it also eases implementations.
The final section of this paper has presented the Ada design of AdaTAD together with an example
of how synchronization can be controlled and monitored using Ada primitives.

7. REFERENCES

1. Miller, E.; etal. Program Testing, JEEE Computer, Vol. 11, No. 4, April 1978 pp.
10-12.

2. Helmbold and Luckham, "Debugging Ada Tasking Programs," JEEE Software, Muarch
198S.

3. Whiteside, I, Jones, S., Levy, P. and Wixon, D. "User Performance with Command.

Menu, and Iconic Interfaces,” in Proc, CHI '85 Human Factors in Computer Systems, (San
Francisco, April 14-18, 1985), ACM, New York, pp. 185-191.

4. Ada Language Reference Manual,

Debugging Tasks with AdaTAD B.11.23

~

-—

N89 - 16281 4, <7/

Software Unit Testing in an Ada Environment

Glenn Wearnock
PRIOR Data Sciences

iatroduction:

PRIOR Data Sciences 1s currently developing a validation procedure for the Ada
binding of the Graphical Kerne!l System {GKS). PRIOR is also producing its own
version of GKS written in Ada. These major software engineering projects will
provide an opportunity for PRIOR to demonstrate a sound approach for software
testing in an Ada environment.

PRIOR’s GKS/Ada validation capability will be a collection of test programs and
data, and test management ‘idelines. These products will be used to assess the
correctness, completeness, aud efficiency of any GKS/Ada implementation.
GKS/Ada developers will be able to obtain the validation software for their own
use. PRIOR anticipates that this validation software will eventually be taken over
by an independent standards body to provide objective assessments of GKS/Ada
implementations, using an approach similar to the validation testing currently
applied to Ada compilers. In the meantime PRIOR will, if requested, use this vali-
dation software to assess GKS/Ada products. This project will require PRIOR to
offer a well organized, thorough, and .:iractical method for high level product test-
ing.

The second project, PRIOR’s implementation of GKS using the Ada language. is a
conventional software engineering task. It represents a large body of Ada code and
has some interesting testing problems associated with automated testing of graph-
ics routines. Here PRIOR’s normal test practices which include automated regres-
sion testing, independent quality assurance, test configuration management, and
the application of software quality metrics will be employed.

PRIOR’s software testing methods emphasize quality enhancement and automated
procedures. These general methods apply to software written in any programming
language. Ada makes some aspects of testing easier, and introduces some new con-
cerns. These issues are addressed below.

The Goals of Unit Testing:

The goal of a test plan is the discovery of the maximum number of errors within a
reasonable cost limit. Costs may be measured in dollars or in elapsed time, and
will have different limits depending on the nature of the software being tested. For
example, PRIOR is aiming to be able to validate a GKS/Ada implementation
within a period of less than one week. To achieve this PRIOR's GKS/Ada test

B.1.2.1

- 9-'_}/

z

suite will have to be carefully organized so that it is both robust, and yet still easy
to use.

Testing of GKS/Ada provides an excellent example for our examination of Ada
unit testing. Comprehensive and sophisticated unit tests are required to test the
complex functionality. The requirements are well defined by the GKS standard,
while the design specifications are covered by the proposed standard Ada binding
for GKS. A unit test plan should test both the GKS requirements, and the
GKS/Ada binding characteristics.

Testing Techniques:

Essentially, the purpose of unit testing is to exercise the module under test to ver-
ify that it performs correctly without producing undesirable side efflects. PRIOR
has developed TESTWARE, a collection of tools which provide a standard metho-
dology to exercise and validate software modules. TESTWARE is used to initialize
the appropriate global data areas and call the module to be tested with the
appropriate input parameters. The returned parameters and results are then
verified.

The use of a tool such as TESTWARE results in a suite of test cases which has
significant value for the full life of the associated software module. An additional
benefit of such a methodology is the ability to measure the degree of test coverage,
to track the progression of testing, and to schedule software projects with greater
accuracy.

The basic component of PRIOR’s TESTWARE is the test driver. The test driver
provides the framework necessary to run the tests and log the results. For each
test, the necessary initializations of global data and input parameters are per-
formed by the test driver. The module under test is called, executes and returns.
The test driver must verify the return parameters and validate the global data.

In the course of execution of the module, some stubs may be necessary to "feed"
the module with the necessary output parameters. It is often desirable to verify
that the correct stubs are called and the appropriate input parameters passed to
them. For these testing activities it would be very convenient to have an Ada com-
pilation system that treated every call to an uncompiled subprogram as a request
to interact with the test operator. The Ada system should make known the
parameter values passed in, and permit the operator to supply values to be
returned. We are currently writing stub coutines to do this, but it would be more
efficient to have this done automatically. Ada compilation systems with this capa-
bility will be very useful.

[ivery module to he tested requires a unique test driver. Therefore, the production
of the test driver must be as automated as possible. Working from a standard

B.1.2.2

ONIQINAL PAGE IS
OF POOR QUALITY

template, the test developer uses standard utilities and adds specialized code to
perform the necessary initializations and verifications.

The test driver is actually driven by the test data. Data is required for initializing
the global data and specifying the input parameters. Stub data is comprised of
stub names, expected input parameters, and the required output parameters.
Additional data describes the expected output paraineteis and specifies expected
changes to globui data. The separation of data from the test program eliminates
the need to recompile the software when test data must be changed. An unlimited
number of test cases can be defined in a single test data file.

Standard utilities are used to provide the translation from data to test case. The
greater the flexibility available in describing test data, the more powerful and easy
to use will be the testing tool. The tester should be able to easily specify
enumerated types, character strings, and floating and fixed point real numbers. A
range or allowable delta must be available for specifying expected output values
such as floating point reals.

A variety of automated test tools such as TESTWARE have been developed for
languages such as Pascal, C, and FORTRAN. These often test for errors which
will not occur in Ada due to the strorg typing, interface checking and run time
error checking. However, additional testing difficulties arise which relate
specifically to the Ada language. Testing of tasking operations is necessary to
identify deadlock and starvation. Pirucedures for testing generic packages are
required. Run time performance must also be assesed.

The GKS/Ada validation suite poses some additional problems. GKS output is
often of a form which is most easily validated interactively. As an example, one
test case may cause a green duck to be drawn upside down in the lower left corner.
An important aspect of effective testing is that the test itself should validate the
resuits. If the test procedure simply describes the correct display the operator may
not notice if the green duck actually appears in the lower right corner. It is prefer-
able to have the test software ask: "What colour is the duck?" (Green). "Is it
upside down?" (Yes). "Is it in the lover left corner?" (No). It can be seen from this
example that the task of supplying effective test software is a significant one.

The overall consideration in the design of TESTWARE is that the tester have the
necessary tools to easily create the appropriate environment for running the unit
under test and to be able to verify its actions and results. At the same time he
must not be required to provide tedious amounts of data which are not directly
related to the test.

Project Management:

Often the test portion of a software project is not given the attention or impor-
tance it deserves. Testing is usually viewed as something like "the process of

.3

[\9}

B.1l.

ORIGINAL PAGE IS
OF POOR QUALITY

demonstrating that errors are not present” when actually errors are inherent in
software. When software is tested by the person or group which developed it, with
this attitude, it is not surprising that many errors go undiscovered.

To be successful testing should be approached with the philosophy expressed by
Glenford Meyers. "Testing is the process of executing a program with the intent of
finding errors". Testing is really a destructive process. The implementation
schedule should reflect this and allow the necessary time for testing and correc-
tions. The evaluation of test eflectiveness sho.ld be based on the number of errors
discovered. To be most effective it is best to have an independent test team.

Significant responsibilities must rest on the test authority. Developing a unit test
for every module in the system is often not appropriate so the test authority must
determine which modules should be tested and in which combination and order.
The selection of appropriate test cases is critical to the success of testing.

Testing can be performed in an incremental or non-incremental manner. In the
non-incremental method, all modules are tested seperately, with calls to lower
modules replaced by stubs. When all modules have been tested, they are
integrated and tested as a system. This method allows for greater parallelism in
the unit testing process.

With incremental testing, the previously tested modules are used by the module
under test, when available, instead of stubs. This provides more test coverage as
the earlier modules are more extensively exercised. Also, integration and interface
errors are discovered earlier and are easier and less expensive to correct.

Although top down design is often the preferred method of large system design,
top down implementation and testing are not always preferrable. It is difficult to
use an incremental method of testing if top-down implementation is used, as it
becomes increasingly more difficult to provide the necessary input parameters to
drive the test cases for the lower level modules as they are added. In addition a
large number of stubs are required. With bottom up incremental testing, fewer
stubs are necessary and the test driver is directly calling the module under test so
that it is easier to force the test conditions.

Test cases can be generated by studying the internal logic and paths of the module
{white box techniques) and by studying boundary conditions and combinations of
input classes (black box techniques). Automated tools can also be helpful for this.

The real effectiveness of an automated test environment will be determined by its
degree of integration into the software development environment. Test modules
have to be associated with the appropriate soltware modules in the library. Com-
mands should be available to permit the library manager to automatically retest
appropriate modules. It is very important to track errors discovered and to have
the ability Vo generate statistics and status information concerning the test process.

B.1.2.4

LRI T G o A AT M 1w g e e

Coordination of Test Development:

A number of GKS test routines have already been written by groups in Europe and
in the U.S.A. . PRIOR intends to include these in its test suite, and then extend it
to cover new areas. By making this activity as visible as possible we hope to avoid
any duplication of effort.

B.1.2.5

N8O - 16282 ¢/

s
Farmally Verifying Ada Programs which use Real Number Types s /'...

~/
David Sutherland

Odyssey Research Associates

B.1.3.1

~
\

Table of Contents

1 Modeling Machine Arithmetic
2 Modeling Program Execution
3 Error Magnitude in the Model
4 Non-standard Analysis

4.1 Non-standard Models
4.2 Non-standard Models of the Reals

5 Non-standard Models of Execution
6 Specifying Mathematical Programs
7 An Example Verification

8 The Asymptotic Interpretation

B.1.3.2

o o U e N =

10
13

C

We wish to apply farmal verification to programs which use real number
arithmetic operations (hereinafter referred to as mathematical rams).
Formal verification of a program P consists of (1) creating a mathematical
model of P, (2) stating the desired properties of P in a formal logical
langquage, and (3) proving that the mathematical model has the desired
properties of step 2 using a formal proof calculus. If the model faithfully
embodies P, and the properties of step 2 are a correct formalization of the

desired properties of P, the formal verification provides a high degree of
assurance that P is correct.

There are two principal difficulties in formally verifying mathematical
programs:

1. How to model inexact machine arithmetic operations
2. How to state the desired properties of mathematical programs in view of

the fact that such programs in general deliver inexact results (e.g. a
square root program does not compute the exact square root)

1 Modeling Machine Arithmetic

Our starting assumption is that machine arithmetic operations can be
represented as the ideal real number operations followed by rounding. The
operation of rounding is modeled by a cropping function, R, from the real
numbers (denoted by R) to R. The range of (R represents the machine real
numbers, sometimes called the model numbers. This was the approach taken in

(1), [2), and [3) and is consistent with the proposed IEEE standard for
floating point arithmetic [4].

We will assume CR satisfies the following axioms, hereinafter referred to as
"the cropping function axioms'':

~ BAxiom 1: The range of (R is finite.

1. Mansfield, R., A Camplete Axiomatization of Computer Arithmetic I to appear
in the Journal of Mathematics and Computation

2. Holm, John, Floating Point Arithmetic and Program Correctness Proofs, Ph.
D. thesis, Department of Computer Science, Cornell University, August 1980

3. Brown, W. S., A Simple but Realistic Model of Floating-Point Computations,
Computing Science Technical Report No. 83, Bell Laboratories, April 1981

4. A Proposed Standard for Binary Floating Point Arithmetic, Draft 10.0 of
1EEE Task P754, Dec. 1982

B.1.3.3

Axiom 2: R(R(x)) = R(x)

Axiom 3: (R(0) = 0
- Axiom 4: [x <=y <= 2z & (R(x) = R(z)] -> R(x) = R(y)

The first axiom expresses the fact that there are only finitely many machine
real numbers. The second axicm says that the result of a rounding operation
(i.e. a machine real number) is unaffected by further rounding. Note that the
second axiom implies that the range of (R and the set of fixed points of (R
are the same. The third axiom says that 0 is a fixed point of CR, i.e. that
0 is a machine real number. The fourth axiom says that if x and z round to
the same number and y is between x and z then y rourds co the same number as x
and z. As usual when stating axioms in first order logic there are implicit
universal quantifiers in front of the formulas displayed as Axioms 2 through
4.

The cropping function axioms are consistent with the four rounding modes which
the proposed IEEE Standard would require to be supported, namely rounding to
the nearest machine real number, rounding towards 0, rounding towards plus
infinity and rounding towards minus infinity. They are also consistent with
rounding away from zero, a mode which is not mentioned in the proposed IEEE

Standard.
We can derive some useful consequences of the above axioms:
1. (R is monotone, i.e. X <=y -> R(x) <= R(y)
2. There is no machine real between x and CR(x).
3, 0 <¢=x ->0 ¢= R(x) and x <=0 -> R(x) <= 0.
Note that the second statement does not imply that there is no machine real

that is closer to x than CR(x). Again, we do not wish to require this because

the proposed IEEE Standard would require other rounding modes than rounding to
the nearest machine real.

2 Modeling Program Execution

We nmust embed the above ideas about modeling machine arithmetic into a larger
model of program execution. We base our formal model of execution on a simple
informal picture of program execution. We think of the program as executing a
step at a time. At each point in time, the program (or the machine it is
running on) is completely described by (1) the "point" in the program where
control currently is, and (2) the values of each of the program variables.
The program code determines the relationship between the values of variables
ard the point of control before a given step and after that step. We will
assume, for the sake of simplicity, that all variables have a defined value
initially, but this value will be unspecified by the execution model. 1In

B.1.3.4

addition, we will assume that the result of attempting to perform a
computation which is undefined (e.g. division by 0) has a completely
unspecified effect. To use the model, it will usually be necessary to prove
that no undefined ocomputations are attempted, and that the values of program
variables are not referenced before they are assigned to.

How do we represent the above informal picture mathematically? We will
represent “time" by the non-negative integers (which we will hereinafter refer
to as the natural numbers). The "points" where control can reside will be
represented simply by a finite set. The data types of program variables other
than real number variables will be represented by the correspording
mathematical objects, e.g. the data type of integers will be represented as

the mathematical integers. The real data type will be represented by the
range of (R,

The execution of the program will be represented by a collection of functions
giving the history of the flow of control in the program and the histories of
the values of the program variables. Thus, there will be a function from time
(i.e. the natural numbers) into the set of control points (which we will

denote by PC), and for each program variable v, a function from time into the
data type of v.

The functions representing histories will be required to satisfy certain
conditions derived fram the program. For example, if X, Y and 2 are integer
program variables, FX, FY and FZ the corresponding history functions, and at a
certain time t control is at a program instruction

Xi=Y+ 12

then the functions must satisfy the cordition

FX(t + 1) = FY(t) + FZ(t)
For real variables, all operations are the ideal real operations followed by

cropping. For example, if A, B and C are real program variables, FA, FB and

FC the correspording history functions, and at a certain time t control is at
a statement

A :=B +C

then the functions must satisfy the condition

FA(t + 1) = CR(FB(t) + FC(t))

B.1.3.5

3 Error Magnitude in the Model

The cropping function axioms capture certain qualitative properties of CR.
They are not enough to do useful verification, however, because they say
nothing about the size of the error introduced by CR. For example, the
cropping function axioms are satisfied by the zero function. Thus, any
program which we could verify using only the cropping function axioms would
have to be correct even when running on a machine which used the zero function
as its cropping function. Very few useful mathematical programs would be
correct in any sense on such a machine, and thus we could not be able to
verify such programs solely on the basis of the cropping function axioms. We
need some additional axioms on the size of the error introduced by CR.

It is not clear, however, what kind of axioms to add. If we add axioms which
give specific numerical bounds on the size of the error in a certain rarge,
then any verification we do will only apply to machines that meet these
numerical canditions. For a machine that did not meet the corditions, any
verification done on the basis of the conditions would be invalid, despite the
fact that many programs might still run correctly on the machine. On the
other hand, some machines which met the conditions would probably actually
meet much more demanding conditions. There oould be programs which run
correctly on such machines which we cannot v-ove correct because our axioms do
not reflect the high degree of accuracy in the machine.

One solution to this dilemma would be to add non-specific numerical bounds on
the error. In other wards, add a symbol (say, "e") and add an axiam like "the
percentage error between x and CR(x) is always less than e." One could then
verify statements about the accuracy of mathematical programs in terms of e.
For example, if P were a program to compute square roots, one might try to
verify a statement like '"the percentage error between P{x) and the square root
of x is 5*e." If one then wanted a certain degree of accuracy from P, one
could solve for the degree of accuracy in (R that would be necessary to
achieve the desired accuracy from P.

There are several problems with this approach. First of all, it i. very
costly. With present technology in automatic theorem proving, the problem of
generating and proving statements of the kind mentioned above in a mechanical
proof system is intractable in terms of both the amount of computational power
and the amount of human input required. Second, in some situations it forces
us to do an analysis that is more detailed than necessary. Many errors in
mathematical programs occur at a much lower level of numerical complexity.
For erample, ZBRENT is a Fortran subroutine from the IMSL library which is
supposed to find a zero of a user-defined function F given a pair of endpoints
A and B such that the values of F at A and B are of opposite sign. It does
this by gradually moving the endpoints inward, always making sure that the
values of F at the current endpoints are of opposite sign. In the process of
the computation, it generates various pairs of real values X and Y which it
must test to see if F(X) and F(Y) are of opposite sign. It does so by

B.1.3.6

ot

miltiplying F(X) and F(Y) together and testing whether the result is negative
or not. This is an incorrect (not to mention inefficient) test, since it is
possible to have F(X) and F(Y) be small nunbers of opposite sign whose product
is so small that underflow causes the machine to compute 0 for theil; product.
This causes ZBRENT to act as if F(X) and F(Y) are of the same sign, giving
incorrect results in some cases. This programming error is not "numer%cal" in
nature, but is inherent in the notion of inexact (although ‘close’)
computation.

What we would like is a model of machine arithmetic which captures the ideg of
"close" but inexact computation without referring to specific numerical
oconstants. In the next section we present such a model. The node} is based
on an alternate approach to real analysis called non-standard analysis.

4 Non-standard Analysis

Calculus was developed in the eighteenth century based on the notion of
infinitesimals. These were positive entities dx smaller than any actual
positive real but not 0. Furthermore, they obeyed the laws of ordinary real
arithmetic so that one oould carry out ordinary algebraic manipulations like

y = x"2
y +dy = (x + dx)"2
(x + dx)"2 = x"2 + 2 * x * dx + (dx)"2
dy = 2 * x ¥ dx + (ax)"2
dy/dx = 2 * x + dx

In particular the derivative, dy/dx, was the actual quotient of two
infinitesimals.

Attempts in the nineteenth century to Jjustify working with these extended
reals were not successful and a different approach amd proof technique in
terms of limits was adopted instead (the so-called epsilon/delta method.)

In the early 60's logicians showed how to justify working with actual
infinitesimals using so-called "non-standard models of the reals." These
models are ordered algebraic structures which have all the same algebraic and
ordering properties of the standard real numbers, and which contain the
standard reil numbers, but which also oontain additional, non-standard
nunbers. Doing real analysis by means of such non-standard models is called
non-standard analysis.

B.1.3.7

4.1 Non-standard Models

What exactly do we mean by a “non-standard model" of some mathematical object
like the real numbers? First of all, by “mathematical object” we will just
mean a non-empty set. Before we give a precise statement of "non-standard
model", we must discuss the notion of a first-order statement about a
mathematical object.

Suppose we have a mathematical object M. A term of M is an expression which is
of one of the following forms:

1. An element e of M

2. f(t1,...,tn) where f is an n-ary function from M into M and t1,...,tn
are previously defined terms of M.

Thus, if M is the real numbers, then 0, 1 and 1 + exp(5) are terms on M (where
exp stands for the "e-to-the-x" function and + is the usual addition function,
written infix).

A first-order statement about M is a statement of one of the following forms:

1. p(tl,...,tn) where p is an n-ary predicate on M

2. A statement built up from finitely many previously oconstructed
first-arder statements by the use of logical connectives (e.g. '"not",
"and", "or", "if-then-else", etc.)

3. A statement of the form "for all x in M, ..." where ... is a previously
constructed first-order statement involving the variable x.

4. A statement of the form "there exists x in M such that ..." where ... is

a previcusly constructed first-order statement involving the variable
x.

The following are first-order stateme: :s about the real numbers:

0 ¢
not (5 =1)

for all x in the real numbers, for all y in the real numbers,
X+ Yy =Yy + X

there exists x in the real numbers such that for all y in the
real numbers, x*y =y

there exists x in the real numbers such that x*x = -1

B.1.3.8

M

Notice that the first four statements are true of the real numbers, whereas
the fourth is false of the real numbers. A first-order statement about M need
not be a true statement about M; it need merely be of a certain form.

In general, there will be some facts about a given mathematical object M which
can be expressed as first-order statements and some which cannot. The first
four examples above are facts about the real numbers which are expressible as
first-arder statements. A fact about the real numbers which is not
expressible as a first-order statement is the fact that every non-empty set of
real numbers which has an upper bound has a least upper bourd (this property
is called completeness). This statement is not a first-order statement as
written because it refers to sets of reals rather than just individual reals.
Some statements which refer to sets of elements or other higher-order
structures turn out to be equivalent to first-order statements. For example,
the statement "for every bounded set S of real numbers, there is a real number
x that is not in S" is not in the form of a first-order statement, but it 1s
equivalent to the first-order statement "for all x in the real numbers, there
exists y in the real numbers such that x < y." It can be shown that the
campleteness property is not equivalent to any first-order statement.

We will now define what we mean by a non-standard model. Suppose we have scme
set M (e.g. the set of real numbers). A non-standard model of M consists of:

1. A set M'
2. For each element e of M, a corresponding element e' of M'

3. For each n-ary function from M into M, a corresponding n-ary function f'
from M' into M'

4, F?r each n-ary predicate p on M, a corresponding n-ary predicate p' on
M

such that every first-order statement which is true of M is true of M' when
the elements, functions ard predicates in the statement are interpreted as the
corresponding elements, functions and predicates of M'. For example, suppose
R' is a non-standard model of the reals. Let +' denote the binary function on
R' corresponding to the addition function on the reals. Since + is
comutative, and since canmutativity of + is expressible as a first-order
statement (see the examples above), +' must be commutative on R'. On the other
hand, R' need not have the completeness property, and there are non-standard
models of the reals which are not complete.

We will call the elements of M' which caorrespond to elements of M the standard

elements of M'. We can identify elements of M with their ocrresponding
elements of M', and thus speak of M as being a subset of M'. Under this
identification, for each function f and each predicate p on M, the
corresponding f' and p' on M' is extends f and p respectively. We will call a
non-stardard model M' of a mathematical object M a proper non-st:ndard model
of M if there is an element x of M' which is not in M.

It can be shown (we will not give the proof here) that every infinite
mathematical object M has a proper non-standard model M'. The same does not

B.1.3.9

hold for finite mathematical objects. The reason is simple. Suppose
M= {el,...,en}, and M' is a non-standard model of M. It is a true first-arder
statement about M that "for all x in M, x=el or x=e2 or ... or x = en"
(the conjunction is finite). Therefore, the statement "for all x in M',
x=el'orx=e2'or ... or x=en'" is true of M', but this says that the
only elements of M' are the standard elements.

4.2 Non-standard Models of the Reals

What does a proper non-standard model of the reals look like? It can be shown
that every proper non-standard model of the reals consists of the standard
real numbers plus the following three kinds of non-standard numbers:

1. Infinitesimals. These are numbers which are not & tut which are smaller
than any standard non-zero real number.

2. Infinite Numbers. These are numbers which are larger than any standard
real number. There are both positive and negative infinite numbers.
Every proper non-standard model of the reals must have infinite numbers
as well as infinitesimal numbers in order to satisfy the algebraic
property that every non-zero number has a multiplicative inverse. The

multiplicative inverse of a non-zero infinitesimal is an infinite
number,

3. Finite Non-standard Numbers. These are numbers of the form x + i where x
1s a non-zero standard real and i is an infinitesimal. Such numbers are
neither infinitesimal nor infinite, but are not standard either.

In the original formulation of calculus, infinitesimals were informally
thought of as non-zero real numbers which were in some sense “arbitrarily
small". Thus, the notion of infinitesimals lends itself very well to modeling

camputation which is inexact, but whose inexactness can be tiken to be
arbitrarily small.

S5 Non-standard Models of Execution

We will incorporate the idea of machine real operations which differ
infinitesimally fram the ideal operations by using non-standard execution
models. A non-standard execution model will be a representation of program
execution like that described in section 2, but with the standard mathematical
objects replaced by non-standard objects. What exactly does this mean?

First, time will be represented by a proper non-standard model of the natural
numbers. A proper non-standard model of the natural numbers oconsists of the
standard natural numbers with infinite elements added. Thus, the history
functions will be functions whose damain is a proper non-standard model of the
natural numbers.

B.1.3.10

Second, all data types of program variables other than real variables will ?e
represented by proper non-standard models of the standard data types (if
proper non-stardard models exist. For example, the data type "boolean™ 1s
finite and therefore has no proper non-standard models. Finite data types
will be represented in non-standard models of execution by the standard model
of the data type). For example, the data type consisting of the positive and
negative integers must be represented by a proper non-stardard model of the
integers (which just looks like the standard integers with both positive and
negative infinite numbers added).

What about the data type of machine real numbers? 1In section 2 we obtained
the machine real data type by choosing a cropping function on the ideal reals
and taking its range. We cannot replace this type by a proper non-standard of
itself, beciuse by the first croppina function axiom, this set is finite and
so has no proper non-standard models. Suppose instead that we start with a
proper non-standard model of the reals R' and a function (R fram R' into R'
satisfying the cropping functiorn axioms and the additional axiom (called the
"error axiam'') that for all finite x in R', (R(x) - x is infinitesimal. This
axiom formalizes the statement that on all numbers that are not "large" (i.e.
not infinite), the roundoff error is "small" (i.e. infinitesimal). We will
use the notation "x == y" to stand for "x - y is infinitesimal."

Unfortunately, there are no such cropping functions. In urder far the error
axiom to be met, the range of CR must be infinite, which contradicts the first
cropping function axiom.

How can we resolve this inconsistency? There are definite cases in which we
make use of the first cropping function axiom in verification, so we cannot
simply abandon it. What we will do instead is, rather than assuming that (R
satisfies the first cropping runction axiom, assume that CR satisfies all
first-order statements implied by the first cropping funct.on axiom. It can
be shown that the first cropping function axian is not equivalent to any
first-order statement, so this is a true weakening of our set of axioms. In
addition, it can be shown that the resulting weaker set of axioms is

consistent. The first-order consequences of the first cropping function axiom
will be more than enough to verify most mathematical programs. In summary, we

will represent the machine real data type in a non-standard model of execution
as the ramge of a function CR fram a non-standard model of the reals into
itself such that (R satisfies cropping function axioms 2 throuch 4, the error
axiom given above, and all first-order statements implied by the first
cropping function axiom.

6 Specifying Mathematical Programs

How do we state the properties of mathematical programs we want to prove?
Suppose we restrict ourselves to considering programs whose purpose is just to
compute some real-valued function, If f is a real-values function of n
arquments, and P is a program to compute f with parameters Al,...,An, we can
state the specification of P in terms of the above formalism simply as "for

B.1.3.11

PR T

all inputs x1,...,xn, P(x1,...,5m) == £(x1,...,5n)" or, in slightly more
detail, "for all inputs x1,...,xn, if P is executed with the initial values.of
Al,vs4,An being x1,...,50 respectively, then P will eventually terminate with
output == £(x1,...,%)." In terms of the above formalism, P has terminated at
a time t if PC(t) = stop where "stop" is a control point at the end of the
program.

7 An Example Verification

To illustrate the use of the model, we will verify a program which computes
the square root function by Newton's method. The proof will be informal. We
will denote the ideal square root of a number x by root(x).
Newton's method begins with an initial “quess" at the square root. The guess
is then refined by an iterative process. At each step, the current guess g is
replaced by (g + (x/g))/2 (where x is the number whose square root is being
camputed). The only facts about Newton's method we will need to know for the
verification are that if x is non-negative and the initial guess is bigger
than root(x), then:

1. All sucoeeding guesses will be bigger than roci(x).

2. Each new guess will be less than the previous guess.
We now give the program. We will adopt the convention of writing the s ls
for machine vreal operations "doubled", e.g. machine real addition will be
denoted by "++", to distinguish machine operations from ideal operations

{which will be denoted by the usual "undoubled" symbols). The value in RESULT
is output when the program terminates. The program is:

SCRT(X:REAL) :REAL
RESULT := X ++ 1
LOOP
IF RESULT ** RESULT ¢= X
THEN LEAVE
IF RESULT <= (RESULT ++ (X//RESULT))}//2
THEN LEAVE
RESULT := (RESULT ++ (X//RESULT))//Z

END

B.1.3.12

END

Note that the conditions for leaving the loop are not the kind of conditions
e usually sees in programs of this type. The usual approach to terminating
iterative processes of this type involves either terminating when a certain
degree of accuracy is reached, or when a certain bound on the number of
iterations is reached, or both. 1In SQRT, the iteration is terminated when the
iterative process in the machine ceases to act like the ideal Newton's method
in one of the two ways mentioned above.

We will now verify that if SQRT is executed with the initial wvalue of X
non-negative and finite, then execution eventually terminates with

RESULT == root(the initial value of x)

We will perform the verification by establishing a series of lemmas, leading
up to the result we want.

Lemmg 0: if x and y are non-negative and x == y, then root(x) == root(y}.
Proof: the proof breaks into 2 cases:

Case 1: x and y are infinitesimal. The square of a non-infinitesimal number
is non-infinitesimal, so root(x) and root(y) must therefore be infinitesimal,
and thus the difference between them is also infinitesimal,

Case 2: either x or y is not infinitesimal. Since the two numbers differ by
an infinitesimal, if one is not infinitesimal the other is also not. Since

the square of an infinitesimal is infinitesimal, root(x) amd root(y) are also
non-infinitesimal, By algebra, we have

X - y = (root(x) + root(y))*{root(x) - root(y))

Since the left side is infinitesimal and the first factor of the right side is
not, the secord factor of the right side must be infinitesimal.

Lemma 1: Whenever (RESULT ++ (ix//RESULT))//2 is computed, RESULT is not O.

Proof: Suppose not. Let t be the earliest time such that PC(t) is at a
statement where (RESULT ++ (X//RESULT))//2 is computed and RESULT = 0 at time
t. Prior to t, the program must have been executing normally, since division
by 0 is the only exceptional oondition that can arise (we are ignoring
exceptional corditions such as STORAGE ERROR or overflow which cannot be
analyzed on the basis of the program's text).

The only points in the program where (RESULT ++ (X//RESULT))//2 is computed
are in the second conditional irside the loop and in the subsequent assignment
statement. Since t is the earliest time when a division by 0 is attempted,
and program execution before t is normal, we can conclude that:

B.1.3.13

s T

1. Control at time t must be at the second conditional.
2. Control at time t - 1 must be at the first conditional with RESULT = 0.

3. X at time t - 1 must be negative (by cropping function axiom 3, if
RESULT is 0 then RESULT ** RESULT is also 0).

But X is assumed to be non-negative initially, and since no assignments to X
can have taken place in the course of normal execution prior to t, X must be
non-negative at time t - 1, a contradiction.

We can therefore assume for the rest of the lemmas that the program executes
nomally at all times.

Lemma 2: The value of X is always the same as the initial value.

Proof: trivial, since there are no steps in the program which assign to X.
Lemma 3: SORT halts.

Proof: Suppose not. In this case, the set of times t where the value of
RESULT decreases from time t to time t + 1 has no upper bound (else at some
point control would leave the loop at the second conditional). This fact can
be expressed as a first-order statement using the history function for RESULT
(call it FRESULT) as follows: '"for all times t there exists a time t' such
that t < t' and FRESULT(t' + 1) < FRESULT(t')." Howvere, the negation of this
statement is a first-order statement which is implied by the first cropping
function axiom, a contradiction.

Lemma 4: After the initial assignment to RESULT, the value of RESULT is always
>= 0 and <= X ++ 1,

Proof: The proof is by induction on time (i.e induction on the number of steps
that have been executed). Immediately after the initial assignment to RESULT,
RESULT = X ++ 1 so certainly RESULT <= X ++ 1, We must therefore establish
that 0 <= X ++ 1.

Since X and 1 are finite, X + 1 is finite and so by the error axicm,
X ++ 1 = R(X + 1) ==X+ 1.1 is not an infinitesimal, arnd X is non-negative,
so X + 1 is at least distance 1 from 0. Since rounding only introduces an
infinitesimal error, and the distance between X + 1 and 0 is not
infinitesimal, X ++ 1 cannot be 0.

To complete the induction, we must show that at every step in execution, if
0 <= RESULT <= X ++ 1 is true before the step, then it is true after. For
execution steps which are not executions of the assignment statement inside
the loop, this is trivial, since no other statement changes the wvalue of
RESULT. Suppose a given step is an execution of the assignment statement
inside the loop. First of all, this means that control must have passed
throught the preceding conditional, so the next value of RESULT must be less
than the previaus value, so if RESULT is <= X ++ 1 before the assignment then
the same is true after. Second, as shown in Lemma 2, in order for control to
have reached this statement at all, RESULT must be non-zero, so it is strictly

B.1.3.14

positive., The value of X is non-negative. Therefore, since R of a
non-negative number is non-negative, (RESULT ++ (X//RESULT))//2 must be
non-negative. This completes the induction.

Lemma 5: RESULT is always finite.

Proof: Since 0 and X ++ 1 are finite and RESULT is always between them, RESULT
is also finite.

Lemma 6: When SQRT terminates, RESULT == root(initial value of X).

Proof: We will denote the value of RESULT at termination by R. The proof
breaks into three cases:

Case 1: R** R=X. By Leimma 5, R is finite so by the error axiom,
R * R == R ** R = X = initial value of X and the conclusion follows by Lemma
0.

Case 2: R **¥ R ¢ X, Claim: R *R < X, If not, then R * R »>= X, so by the
montonicity of CR, R ** R = CR(R * R) <= CR(X) = X, a oontradiction. The
initial value of RESULT has square > X, so the assignment statement inside the
loop must have been executed at least once before termination. Therefore,
there exists a previous value of RESULT, call it RP, such that
R = (RP ++ (X//RP))//2 <,RP and RP ** RP > X. By the same reasoning as above,
the second statement implies that RP * RP > X. Therefore 0 < X/RP ¢ RP so X/RP
is finite, so (RP ++ (X//RP))//2 == (RP + (X/RP))/2. But the left side is less
than root(x), while the right side is greater than root(x) by property of
(ideal) Newton's method. When two numbers which differ by an infinitesimal
are on either side of a fixed nurber, they each differ from that fixed number
by an infinitesimal. This establishs the conclusion.

Case 3: R ** R > X, In this case, the program must have terminated because
R <= (R ++ (X//R))//2. The assumption of the case implies that R ¥ R > X as
above, so 0 ¢ X/R ¢ R so X/R is finite, so (R ++ (X//R))//2 == (R + (X/R))/2.
The left side is »>= R, while the right side is < R by property of (ideal)
Newton's method. Therefore, R - ({R + (X/R)}/2) is infinitesimal.
Rearranging algebraically, we get {R¥*R - X)/(2*R*R) is infinitesimal. The

denominator is finite, so the numerator must be infinitesimal. The conclusion
follows from Lemma O.

8 The Asvmptotic Interpretation

What does verification of a mathematical program executing over a non-standard
moxdel of the reals tell us about actual execution on a standard machine? This
guestion is similar to the question 'what does a proof in non-standard
analysis involving infinitesimals show about analysis in the standard reals?"

We will explain heuristically how non-standard analysis proofs relate to
staruard analysis, and arque by analogy that the same relation holds between
verification of non-standard execution and execution on a standard machine.

B.1.3.15

It can (and has) been proved that the analogy is actually valid, but the proof
is beyond the scope of this paper.

Consider the non-standard analysis proof that the derivative of the x"2
function is 2*x. It goes as follows: take an arbitrary infinitesimal i and
compute ((x + i)"2 - x"2)/i. The result is 2*x + i. Thus, the value of the
difference quotient for any infinitesimal is only infinitesimally different
from 2*x. This is actually a proof that the standard x"2 function has
derivative 2*x in the usual sense, although it takes some mathematical logic
to prove the connection.

What does it mean to say that the derivative of x"2 is 2*x in standard
analysis? It means that the limit of the expression (x + h)"2. - x"2)/h as h
goes to 0 is 2*x. Thus, a non-standard analysis proof about numbers being
infinitesimally different establishes a standard fact about behavior of an
expression as a certain quantity gets smaller and smaller.

The same relation holds between non-standard and standard execution. Our
proof that if x is non-negative and finite then SQRT(x) == root(x) actually
establishes that if we run SORT on a sequence of machines whose (R is more and
more precise, the output of SQRT(x) will converge to root(x). More generally,
if we have any real-valued ideal function f and a program F and we can prove
in the non-standard formalism that for all finite x in the damain of f,
F(x) == £(x) then this will establish that if we run F on a sequence of more
and more precise machines, the output of F(x) will oonverge to f£{x). To put

it another way, we can obtain any degree of precision in F(x) by computing
F(x) on a sufficiently precise machine.

B.1.3.16

T -

NS89 -16288

/—..‘//’,/,{//’ cal D \

Ada® Test and Verification System: (ATVS)
Tom Strelich

General Research Corporation
5383 Hollister Ave.
P.O.Box 6770
Santa Barbara, CA 93111

1 Introduction

The Ada Test and Verification System (ATVS)! is an integrated set of
software tools for testing, maintaining, and documenting Ada programs.
The objectives of the ATVS are to improve the reliability and maintainability
of Ada programs. GRC performed the research and analysis leading to the

specification of ATVS requirements and its high-level design2 .

1.1 Background and Overview

Software testing, verification, validation, and certification are critical
software development problems facing NASA. To overcome these
problems, NASA has invested large amounts of time and money to correct
and certify systems only to find that, when deployed, they often behave
erratically or produce incorrect results. Spending more time and money on
exhaustive testing won't solve the problem either since most software
programs found in mission critical systems (such as the Space Station) are of
such size and complexity that no amount of testing can guarantee completely
correct, error-free performance. The objective then is to make the testing
process as effective as possible by providing computer-aided assistance to the
software engineer to help them discover the greatest number of errors for
every hour spent testing.

® Ada is a registered trademark of the U.S. Government Ada Joint
Program Office (AJPO).

I This work was performed under Rome Air Development Center Contract
F30602-84-C-0118

2 Ada Test and Verification System (ATVS): Final Report, General
Research Corporation, CR-6-1301, September 1985.

B.1.4.1

v yrTi ML P RIS SOCTT e & P MRS g SRR T A

Sy -6l

/975‘3%& |

|

A proven approach to software testing is the use of Automated
Verification Systems (AVS). This technology was pioneered both by NASA
and Rome Air Development Center, and GRC has participated actively in
these efforts. For NASA, GRC developed an AVS for the AED language.
For RADC, GRC developed AVS's for FORTRAN, COBOL, and JOVIAL
J73 (FAVS, CAVS, and J73AVS). The ATVS represeats the logical
evolution of AVS technology in support of the Ada programming language.

Ada provides a high-level programming language with advanced
capabilities addressing reliability issues (e.g., strong data typing, exception
handlers, information hiding, etc.). However, the Ada language alone
represents only a partial solution to software development problem
confronting NASA: the full benefit of Ada to Space Station Software
development will be realized through the synergistic interaction of the Ada
language, the Software Development Environment, and supporting software
tools (e.g., ATVS).

1.2 Operational Concept
Figure 1.1 illustrates the ATVS high-level operational concept:

1. Ada source code is submitted to the ATVS for Static Analysis
(e.g., package dependencies, program call tree, global symbol
information, data flow anomalies and errors, unreachable code,
potential task deadlocks, etc.). In response to the Static analysis
reports and displays, the user makes whatever corrective actions
are required and repeats the process until there are no statically
detectable errors in the source code.

2. The user's Ada source code is then Instrumented with run-
time data collection probes which capture execution information
(such as execution coverage, performance timing, and task state
activity) for subsequent analysis and reporting.

3. The instrumented Ada source code is then compiled, linked,
executed (with user supplied test data) with the ATVS
instrumentation probes collecting run-time execution
information. Assertion violations are reported to the user who
may then make corrective actions and repeat the process.

4. The run-time execution data collected by the ATVS
instrumentation probes is analyzed producing execution
coverage, timing, and task state reports. Based on these reports
the user takes corrective actions such as modifying the test data

B.1.4.2

- w,:y':sw

ATVS
Nt
Analysis

Modified Ada

ou
New Ada Source

J'\
Take
Action |
ATVS
Instrumentation
QCompile)
Q Link j
v
— Take —p

Test
Test Data Ins[mmented
Program

v
ATVS

Post-execution
Analysis

Action

Take
Action™ —

7] —— Take Action—aJ

Figure 1.1. ATVS Operational Concept.

B.1.4.3

to effect execution coverage or modifying the source code to
improve performance, eliminate unanticipated task interactions,
and correct logic or design errors.

As suggested by the previous scenario, application of the ATVS is
focused on the coding and testing phases. Figure 1.2 illustrates the role of the
ATVS in the DOD-STD-2167 software development cycle: namely, Coding
and Unit Testing, CSC Integration and Testing, CSCI Testing, and
Maintenance Phases (while the Maintenance phase is not explicitly described
in DOD-STD-2167, we have included it since the ATVS is expected to be
used quite heavily for software maintenance).

. L ; Coding .
Requirements| Preliminary |Detailed Integration Testing |Maintenar-:

Analysis Design Design and and Test !
Unit Test

Figure 1.2. Role of the ATVS in the Software Life Cycle.

1.3 Objectives

The objective of the ATVS is to provide a set of computer-based tools
which improve the reliability and maintainability of Ada software systems.
The specification and design of the ATVS concentrated on the environmental
context: that is, its effective integration within an advanced software
development environment (such as NASA's SDE) and its contribution to that
environment (e.g., support for project management, change and
configuration management, test and integration, documentation,
requirements traceability, etc.). The ATVS will provide detailed program
information for software engineers and programmers and summary
information for software project managers. The ATVS can provide
management visibility by serving as a window into the software development
process.

B.1.4.4

{’ 2 Capabilities

The ATVS will provide both Static and Dynamic Analysis of user
programs. The requirements and design of the ATVS concentrated on
providing support for the unique features of the Ada language, host-target
testing issues, distributed environments, and advanced user interface

. capabilities.

ATVS capabilities fall into four functional groups: Static Analysis,
Dynamic Analysis, Report Generation, and User Interface capabilities.
. Table 2.1 summarizes ATVS Functional Capabilities by group. Specific
capabilities of the ATVS are described in the following paragraphs.

Table 2.1. ATVS Functional Capabilities by Group
Static Dynamic Report User
Analysis Analysis Generation Interface
e Source Processing | o Instrumentation = Automated * Batch and
. - Coverage Reports Interactive User
s Static/Structural -- Timing Interface
Analysis -- Tasking + DOD-STD-2167
Documentation * Interactive
e Static Task * Executable Walkthrough
Analysis Assertions » Prologue Insertion
& Extraction
e Programming * Post-execution
Standards Analysis « Software Quality
Metric Data
e Unit Testing

2.1 Static Analysis Capabilities

Ada Source Processing. The ATVS will process the Ada language and
perform lexical, syntax, and semantic analysis necessary for subsequent static
and dynamic analysis. It will produce a DIANA intermediate representation
of the users program which will be used to build the ATVS database. The
ATVS database is the central repository of program information and serves
as the primary means of communication between ATVS tool components.

B.1.4.5

Static and Structural Analysis. The ATVS will provide extensive static

and structural analyses concentrating on analyses unique to the Ada language.
The analyses include:

e Package Dependencies -- describes "with" and "use” context clause
dependencies and is valuable for change impact analysis

e Compilation/recompilation Order Dependencies -- Provided by
most compilers, it is useful for maintaining system consistency
subsequent to program modification

e Data Flow Errors/Anomalies -- identifies variables declared but not
used, uninitialized variables, actual output parameter not set, etc.

¢ Global Symbol Use -- Identifiers, Types, Overloadings, Generics,
Exceptions, Interrupts

Static Task Analysis. This capability identifies the set of all possible
sequences of concurrency in a given program. This sequence set is then used
to identify features of the program's synchronization structure such as: all
possible task rendezvous, all potential areas of concurrent execution, and
areas of potential task blockage (i.e., deadlock). This capability will utilize

the Temporal Semantic Analysis approach described by Bulr, et al3 .

Programming Standards Checking. This capability provides for user
source code auditing against a set of modifiable programming standards. For
example, "the maximum # of statements in a procedure 1s 25". The ATVS
has defined a set of 46 programming standards.

2.2 Dynamic Analysis Capabilities

Instrumentation and Executable Assertions. Instrumentation consists
of the insertion of software probes into the user source code. These
instrumentation probes collect run-time program information for subsequent
analysis and reporting. The types of instrumentation include: program
execution coverage, program timing, and tasking activity. An executable
Assertion is a statement placed in the source code by the programmer to
indicate that the specific condition should exist. For example:

3 Buhr, R, etal. "Experiments with PROLOG Design Descriptions and
Tools in CAEDE: An Iconic Design Environment for Multitasking,
Embedded Systems,” Proceedings of the 7th Int'l Conf, on Software
Engingering 1 ' R}

B.1.4.6

--. assert ((velocity - v_naught) > epsilon)

Whem W@g&m@mm&@)m PROQIAM
execution, the Assert statement can either display an assertion violation
message to the user, or take some alternative action defined by the user.

Post-execution Analysis (Coverage, Timing, and Tasking). This
capability processes the program execution data collected at run-time by the
instrumentation probes embedded in the user's source code. Analyses
include: (1) execution coverage for programs at the subprogram, branch,
and statement level; (2) execution timing at the subprogram, named block, or
statement level; (3) task state transitions, basically a trace of the program’s
tasking activity. The tasking analysis information can be used in cooperation
with the static task analysis information to determine the extent of task
sequence set coverage (task synchronization set coverage represents the
functional analog of execution coverage in sequential programs).

The ATVS will provide data collection for both single and multiple
program executions. This capability allows post-execution analyses to reflect
incremental and cumulative execution coverage, timing, and tasking
information. This type of historical information is an essential part of
software documentation.

Unit Testing. This capability provides for automatic (with user
direction) construction of Ada drivers and stubs. It will identify the
undeveloped portions of a program and will construct Ada driver and stub
"skeletons" which can be customized to a user's particular testing

requirements. This capability supports both top-down and bottom-up
development methods.

ATVS Dynamic Analyses will be supported for both host-resident and
target-resident Ada programs (assuming an upload/download capability
between the host and target).

2.3 Report Generation Capabilities

[t is important to note that the ATVS design has separated the process
of static and dynamic analysis from the process of report generation. The
effect of decoupling these two activities (which communicate through the
common database) is that it allows definition and incorporation of new
analyses and reports to proceed independently of one another. This approach
provides the flexibility necessary for the incorporation of new capabilities
into the ATVS allowing it to evolve over time in response the the

B.1.4.7
ORIGINAL PAGE IS

OF POOR QUALITY

environment, the user community, and advances in software engineering.
Table 2.2 summarizes ATVS automated reports.

Table 2.2. Summary of ATVS Automated Reports.

Static Analysis Repcrts Dynamic Analysis Reports
Summary Information Repori Testcase Report
Compilation Unit Overview Keport Exccution Coverage Summary Report
Compilation Order Repon Branch Coverage Summary Report
Subprogram/Task Dependency Report Detailed Coverage Report
Subprogram Cross Reference Branch Report
Task Cross Reference Reaching Set Report
Package With/Use Dependency Report Execution Timing Report 1
Package Element Set/Use Cross Reference Execution Timing Report 1l
Data Dictionary Report Task State Report

Global Entities Cross Reference
10 Statements Report
Type Information Repornt

Type Cross Refrence Report
Object Cross Reference Report
Type Derivation Report

DOD-STD-2167 Reports

Generic Instantiation Report Calling Tree Report
Exception Handling Repont Functional Allocation Report
Interrupt Handling Repont Global Data Definition Report
Overloading Information Report Input Data Report

Statement Profile Report Local Data Deiinition Report
Software Metrics Report Output Data Report

Target Code Cross Reference Element Utilization Report
Data Flow Anomaly Report File Description Report
Programming Standards Report Record Description Report

Source Re-analysis Report

Automated Static and Dynamic Analysis Reports. All static and
dynamic analyses performed by the ATVS will be available to the user in
both interactive display and hardcopy forms. The ATVS will provide 25
Static Analysis Reports and 9 Dynamic Analysis Reports.

DOD-STD-2167 Compatible Reports. The ATVS will provide nine

automated reports consistent with DOD-STD-2167. These reports are
variants of the ATVS automated reports and are generated from database-
resident information provided by ATVS static and dynamic analyses. The
separation of analysis and report generation described above allows for the
definition of <everal reports based on the same analysis. This will allow

B.1.4.8

definition of new reports (both informal and DOD-STD) without requiring
development of new analyses.

jon. The ATVS supports the insertion of
selected automated report information (e.g., package, subprogram, and task
dependencies, global symbol use, etc.) into a prologue (i.e., a descriptive
preface to a program unit). Prologues are embedded in the user's source
code as Ada comments and can be augmented with user provided
information. Automatic insertion of prologue information ensures current
and consistent program documentation. Prologues can be automatically
extracted from the source code to generate formal documentation.

Raw Software Metric Data. The ATVS will provide raw software
quality metrics for analysis by other environment tools. These metrics (37
indiviaual metrics supporting 8 software quality criteria) are consistent
with the STARS Data Collection Forms, Software Evaluation Report and

Software Characteristics Report4 .

2.4 User Interface Capabilities .
Batch and Interactive User Interface, The ATVS will provide both a
batch and interactive user interface. The batch interface will utilize a batch
command language to direct ATVS processing. The full complement of
ATVS capabilities (except for exclusively interactive activities such as

Interactive Walkthrough) will be accessible through the batch command
language.

The Interactive User Interface will be based on a hierarchical menu
structure providing users controlled access to ATVS functions. There will
be an extensive on-line help facility providing both reference and tutorial
information. The Interactive User Interface will take advantage of advanced
terminal/workstation bit-mapped graphics capabilities such as multiple

windows, pull-down menus or palettes, and alternate input devices such as
mice.

Interactive Walkthrough. Inte.active Walkthrough replaces the
manual process of "digging" through large source listings, cross reference
reports, and other forms of documentation. It provides users with
controlled, interactive access to the source code comprising a large software
system. The user can browse the source code based on the program's call

4 Interim Software Data Collection Forms Development -- Software
Evaluation Report, Software Technology for Adaptable, Reliable Systems
(STARS), RADC/COEE Griffiss AFB, NY, June 1Y85.

B.1.4.9

tree or as directed by the user, and the multiple window capabilities of the
interactive user interface allow simultaneous access to various ATVS static
and dynamic reports.

3 Database and Workstation Issues

3.1 ATYVS Database

The ATVS database was designed as an "Entity-Relation-Attribute”
(ERA) Database composed of 13 database entities and 17 associated
relationships. The ERA model was selected for its expressiveness and
flexibilty: The ATVS database contains a great deal of semantic program
information that is best represented in the ER model.

3.2 ATVS Functional Distribution to Workstations

The ATVS was designed to operate in whole or in part on either a host
machine (such as a VAX) or a microcomputer workstation (such as a SUN or
VAXStation II). This flexibility allows program managers to relegate
certain ATVS functions (e.g., source processing, instrumentation, etc.) to the
host machine, and other functions (e.g., static analysis, post-execution
analysis, interactive walkthrough, etc.) to the workstation. Microcomputer
workstations often provide advanced capabilities (such as multitasking, bit-
mapped graphics, multiple windows, etc.) that the host cannot easily (if at
all) provide without serious degradation in system response. An additional
benefit target system testing since microcomputer workstations are often
used as embedded system development environments.

4 Current Status and Conclusion

The ATVS functional description and high-level designd are complete
and are summarized in this paper. The ATVS will provide a comprehensive
set of test and verification capabilities specifically addressing the unique
features of the Ada language, support for embedded system development,
distributed er-/ironments, and advanced user interface capabilities. Its design
emphasis was on effective software development environment integration
and flexibility to ensure its long-term use in the Ada software development
community.

5 Ada Test and Verification System (ATVS): Functional Description,
General Research Corporation CR-2-1301, September 1985.

B.1.4.10

=
=

P

s o o NS§;16284

The Testability of Ada Programs

David Auty, SofTech, Inc.
Norman Cohen, SofTech, Inc.

Software development for NASA's space station poses a significant
challenge; considered the most difficult challenge by some. The difficulty is
the magnitude and complexity of the required software. With the requirements
for remote contrcl and communications, software will lie at the heart of many
essential and complex systems within the station. The combined requirements

for highly-reliable systems exceed any sof.ware development effort yet
attempted.

NASA's previous experience with software development centers on the
assembly code and the code in the high-level language HAL/S, developed for the
space shuttle. Within the development of that software there was heavy
reliance on careful testing and thorough multi-level checkout. Within the
HAL/S development environment, the checkout procedures could depend on the
stable characteristics of and limitations on program behavior inherent in the
language. This paper addresses the concerns raised by consideration of the
requirements for testing and checkout procedures for the space station
software. In particular it addresses the use of Ada in the development of
widely distributed yet closely coordinated processing.

This analysis is done in two contexts. First, an evaluation of the
language is presented, discussing how the rules and features of the Ada
language effect the testability of software written in it. Second, some
general techniques in software development which can augment testing in the
development of reliable software and some specific recommendations for tools
and appropriate compilation are presented.

This paper is a summary of a full report prepared at the conclusion of an
extended study effort on this topic. It therefore does not go into detail in
elaborating each point of interest. An attempt has been made to cover the
breadth of the report and present its key findings.

Evaluation of Ada

We begin by discussing how a programming language can be evaluated for
testability. For our purposes, testability is the ability to determine, by
test execution of software, whether the software will function correctly in
operational use. Testability measures the extent to which it is possible to
construct tests such that the behavior of the software on those tests reflects

8-1-501

o

/

)5 7027
7 £
/:2// y &L w/ 53

the behavior of system when deployed. MAmong the issues related to testability
are the ease of generating comprehensive test cases, the predictability of
resource utilization under all circumstances and the deterministic

repeatability of processing sequences.

This definition applies principally to the developed program, but it can
be extended to apply to the language used to express that program. A
programming language supports testability to the extent that it facilitates the
writing of testable software. We have identified the following attributes of a
programming language which facilitate testability:

- support for modular decomposition (i.e., supporting the testing of units
independently of their use in the system),

- existence of interface specifications constructs which are clear and
comprehensive

- complete type and program unit specifications allowing comprehensive
consistency checking during program compilation,

-~ well-defined run~time error handling,

- predictable resource allocation and utilization,

~ support for the writing of test drivers and hardware stimuli simulation,
and

- support for the creation of high-level abstractions.

With these evaluation criteria, we considered the following aspects of the
Ada language:

- Data Types and Subtypes,

- Separate Compilation and Packages,
- Subprogram Definition,

~ Generic Units,

- Exceptions,

- Concurrent Processing and

- Storage Management.

Each aspect was considered from the viewpoints of conformance with
evaluation criteria, risks to testability and recommendations for reducing
those risks.

Fig. 1 shows an evaluation criteria versus features matrix showing the
extent of support of the Ada language for testability. The matrix shows where
aspects of the language support the evaluation criteria, independent of the
possible risks within the same feature area. In general, the strong typing
rules of the language and the concept of separate specification and progranm
unit bodies provide excellent support for testability.

B.1.5.2

e :41“‘5&’:

gy,

Data Types and Subtypes
Separate Compilation and Packages

)
)
(' ! Subprograms
- H ' ! Generic Units
H ' H) Exceptions
1 } ! ! H Concurrent Processing
i i ' : ' ! Storage Management
: -+---*-——+—--+--—+-—-+——-+-:
Modular Decomposition P 0 0! 0} @ | 1 e '
Clear & Comprehensive 10 0! 06} @) 0] 0 0]
interface specifications | .} .} .V o} oV b o
Compile time consistency P e 0 0} @) ! ! H
checking T T O T T T
Well-defined run-time N ! H el e e |
error handling T e e T R S
Predictable resource use P 0 0! ' Vel e
and allocation R e T e e T
Support for test and test ! el e 6 e e | i
driver programs | T e
Support for creation of Ve 0 0 0 0! 0! @
]]]]] 1 (] |
])]]]] t L}

high level abstractions

Fig. 1, Evaluation Criteria vs. Feature Matrix

Two areas of particular interest are represented as only half-filled
circles in the evaluaticn matrix. These represent qualified support for the
evaluation criteria. In the case of exception management, the rules for the
raising of exceptions, including user specified raise statements, and for
exception propagation, allow for a very concise treatment of exception
processing. Thus, when properly documented, exception processing as defined in
the language is an important part of a module's interface, supporting the
requirement for clear and comprehensive interface specifications. Because it
is dependent on optionally included comments, however, this can be considered
only gqualified support for the evaluation criteria.

The second half-filled circle is under generic units. This is a similar
situation as for exceptions. The rules for formal generic parameter
specification and for generic instantiations allow for a clear and concise
specification of the units interface. However, as will be discussed under
risks, there are secondary aspects of actual parameters (which we term second
order properties) which are not documented, such as functional requirements on
actual procedure parameters. Because these secondary aspects can be critical,
yet possibly undocumented, support in this area is also qualified.

B.1.5.3

Testability Risks

In the evaluation of the Ada language features, several risks to
testability as well as the above benefits were identified. These risks fall
into two broad categories of inefficiency and hidden interfaces, plus one
additional concern without such convenient categorization.

The concern over efficiency is based on a simple assumption that features
which fail to provide adequate efficiency will not be used in many
applications. The resulting program which may be more or less convoluted in
its avoidance of this feature will certainly not have benefited in its
testability. Although processing capabilities and memory sizes are increasing
dramatically, the requirements to surpass the increased capabilities are
already being considered. Concerns over efficiency in Ada fall into three
areas:

-~ excessively expensive run-time checks,
- 1inappropriate or undirected instantiation of generic units, and

- excessively expensive tasking architecture.

These can be collected under the general concern of inefficiency in support of
high-level abstractions.

The second broad concern is that of hidden interfaces. Despite the strong
support in the language for detailing important interface information, several
possibilities for hidden interfaces exist. Hidden interfaces exist wherever
interactions or dependencies exist which are not part of the specification or
declarations of the unit. These can be classified as being due to:

- global variables (side effects of procedure and function calls, contention
over access between separate tasks),

- the raising and propagation of exceptions,

- dynamic storage utilization,

- dynamically determined timing behavior, and

- second order properties (e.g. functional requirements on actual procedure
parameters) for generic instantiations.

An example of second order properties would be the case of a generic
sorting procedure. A typical implementation will have the type of the objects
ng oo genoric parametar, requiring o seootd parametor tu be o funotion which can
compare values of that type and return a boolean value on the basis of the
condition "less than". The second order property of the actual function used
during instantiation is that it must return a proper ordering of all values of
the type. In fact, it is conceivable that the sorting routine may never reach

B.1.5.4

an exit point if the function does not have this property. Yet this property
is not required in any way by the language during instantiation.

e last risk for testability is the general non-determinism of tasking
interactions. While not so much a fault of the language, as asynchronous
concurrent processing is inherently non-deterministic, the presence of tasking
in an Ada program can complicate the testing of that program.

Recommendations to Reduce Risk

In response to the identification of these risks, several recommendations
for reducing the risk were made. These fall under the general headings of:

- requirements for appropriate development practices and training,
- requirements for appropriate tools, and
- requirements for appropriate compilation.

The principle behind the requirements for appropriate development
practices and tools is based on the recognition that their use can help assure
reliable software where testing is difficult. Testing practices can be
augmented by the use during development of proof techniques, static program
analysis and runtime monitoring. Throughout the development process,
verification techniques can be used to insure principles identified and
verified early in the development are held true through implementation.

For appropriate programming guidelines and training, the following
suggestions were made:

- For numeric processing, training should include a discussion of digital
computation algorithms and their interaction with underlying numeric
precision in determining the accuracy of the computed value. This is
necessary to put the rules for numeric precision of the language in proper
context.

- Programming Guidelines should be established for:

- the judicious use of suppress and inline pragmas to provide
efficiency as necessary,

- the avoidance of global variables and hidden side effects,

- the hiding of persistent variables in package bodies (and therefore
private to the package), and

- the use of out parameters from procedures over unconstrained
composite results from functions (allowing better storage
utilization).

B.1.5.5

= Training should emphasize:
- concurrent programming concepts and practices
- the concept and significance of second order properties of generic
parameters

- Standards (with enforcement) should be established for:
- the documentation and use of exceptions
-~ storage utilization practices

A more reliable approach to improving testability is through the use of
appropriate tools to aid in the development process. The following are some
tools to specifically address the risks for testability identified:

- Proof systems for verifying 2nd order assertions in generic instantiations
and assertions about task interactions, task state systems and other
program properties.

- Runtime monitors for deadlock and other deadness errors, storage
utilization parameters, and other runtime properties.

- Static program analysis for tasking interactions, storage utilization and
other program properties including adherence to the programming guidelines
listed above.

- Expert system support such as a "real -time assistant" for cyclic-based
system generation.

Having identified program efficiency as a risk to testability, in that
good features of the language will not be used if they are not sufficiently
efficient, several suggestions for appropriate compilation should be
considered. In general, a highly optimizing compiler, with efficient,
deterministic runtime support is a necessary goal. Particular attention should
be given to the following features:

- optimization of subtype range constraint checking,

- reduction of uncertainty in the raising of predefined exceptions,

- space efficient compilation with pragmas and representation clauses for
user control of storage utilization,

- optimization of tasking interactions with special support for tasking
paradigms through pragmas or pattern recognition, and

- efficient size and speed of generic instantiations with pragmas for user
specification of instantiation criteria.

B.1.5.6

(

Sumary

In summary, it was found that the language offered the potential to
greatly improve the testability of software, provided that certain guidelines
were followed. The language introduces features to deal with higher level
abstractions and the complexities of concurrent processing and dynamic storage
utilization. These features are considered necessary to deal with the
camplexities of the space station software requirements, but can decrease the
testability of that software. These risks to testability can be dealt with
through a combination of appropriate development practices and training,
appropriate tool support and appropriate compilation.

B.1.5.7

SC-6/

| g - 5 /67030
Ng9-16285 iy

R AN
S s LS J/‘

FORMAL VERIFICATION AND TESTING:
AN INTEGRATED APPROACH TO VALIDATING ADA PROGRAMS

Norman H. Cohen

SofTech, Inc,
One Sentry Parkway, Suite 6000
Blue Bell, Pennsylvania 19422-2310

NCohenfAda20

Formal verification is the use of mathematical proof to confirm that a
program will behave as specified when it is executed. Formal verification
can produce a much higher level of confidence in a program than testing.
Nonetheless, formal verification requires large amounts of skill, human time,
and computer time, so it would be impractical to verify formally an entire
Ada program for a typical embedded computer applicacion.

We propose an integrated set of tools called a validation environment to
support the validation of Ada programs by a combination of methods. The
validation environment exploits the Ada distinction between module interfaces
and module implementations to validate large Ada programs module by module.
The proposed validation environment is called the Modular Ada Validation
Environment, or MAVEN., MAVEN does not yet exist, nor have efforts begun to
construct it., Rather, MAVEN is our vision of the context in which Ada formal
verification should be applied. A more complete discussion of MAVEN can be
found in [1].

Our vision of MAVEN 1is based on several requirements that we have
identified for the validation of Ada programs. These requirements are based
on the recognition that Ada programs for mission-critical applications are
large, that skilled software engineers are in short supply, that the
construction of a verifier is an expensive undertaking, and that the use o! a
verifier may be time consuming. Our requirements are as follows:

1. Formal proofs should not be based on the behavior of a particular
implementation.

2. It should be possible to validate a large program module by module.

3. For typical mission-critical applications, verification will have to be
integrated with other forms of validation,

4, It should be easy to request the proof of certain critical properties
which, while they do not imply correctness of a module, significantly
raise our confidence in its reliability.

See [2] for a more complete discussion of these requirements.

B.l.6.1

When software engineers use the term "validation and verification," thgy
usually do not have formal verification in mind. To avoid confusion, thls
paper u.es the terms validation and verification in two distinct and precise
senses:

Verification is the use of formal proof, checked by machine, to
establish properties of a program's run-time behavior.

Validation is the process of increasing one's confidence in the
reliability of a program. Formal proof is one of many methods
for validating software.

Confusion may also arise from our use of the term environment, Ada
Programming Support Environments (APSE's) already exist, and have functions
that overlap those we propose for a validation environment, We do not
envision MAVEN as a full APSE or as a tool set independent of an APSE.
Rather, we view MAVEN as an integrated tool set embedded within an APSE. It
can be thought of as a "subenvironment." Many APSE tools, including an Ada
compiler, may be used both for validation and for other purposes.

1 Integration of Multiple Validation Methods

One reason for validating programs module-by~module is so that different
modules c¢an be validated in different ways. There are many software unit
validation methods, all of which have been used successfully in the past.
These include:

~ formal proof generated with machine assistance and checkeda by machine
- informal proof carried out by hand

- code walkthroughs

- unit testing

- acceptance of a software component as trustworthy, based on experience
using the same component in a previous system

It is not necessary for a project to choose one of these validation methods
for use throughout a program. Given the right framework, different methods
can be combined in an effective symbiotic relationship to ensure the quality
of a system.

While formal verification is the most effective means of ensuring
consistency between a program and its specifications, it has limitations.
These include the problem of validating that the specifications themselves
specify what the customer wants; and the cost -- in both machine time and the
time of skilled personnel -- of developing and checking the proof. The
manufacture of software, like any manufacturing process, entails a tradeoff

B.1.6.2

B A

between cost and level of quality assurance. In some programs there are
modules for which any form of validation less powerful than formal proof
would be soclially irresponsible. Sometimes the same program also contains
many modules for which formal proof would be a wasteful misallocation of
resources,

Furthermore, there may be some modules that cannot be verified because
they use features of the language for which there are no proof rules.
Features may be excluded from the "verifiable subset" of Ada even if there
are occasional legitimate uses for such features. Such legitimate uses can
be isolated in modules that are validated by some means other than tormal
proof. In particular, low-level features of the Ada language are inherently
machine dependent and thus not characterized by proof rules, Low=level
features can be isolated in interface modules, allowing the rest of a system
to be validated by formal proof.

Many factors combine to determine the most appropriate form of
validation for a module. The cost of formal proof must be compared with the
possible impact of an error in the module. Low-level, target-dependent
interface modules might best be validated by informal proof. For certain
hard-to-specify modules, for e ample a graphics display builder whose desired
output is specified pictorially, testing might be not only the cheapest, but
also the most reliable form of validation. For modules that are not
particularly critical, and for which test drivers would be difficult to
write, code walkthroughs might be most appropriate. Software might simply be
trusted (until integration testing) if it has been extracted from a working
system in which it has functioned reliably.

To ensure complete coverage, different forms of validation cannot be

combined haphazardly, There must be a unifying discipline. One of the
functions envisioned for MAVEN is to provide such a discipline.

2 Validation Libraries

The Ada language was designed to facilitate the construction of huge
programs. A pervasive theme in the design of the language is the division of
a program into units that can be understood individually yet checked for
consistency with each other. If this theme is extended from unit compilation
to unit validation, one unit of a program can be changed and revalidated
without revalidating the rest of the program. This is especially important
during program maintenance,

Module-by-module validation of a large program can be achieved in the
same way as module-by-module compilation, Compilation of an Ada program unit
consists not only of code generation, but also consistency checking. A
unit's syntactic specification is compiled before either the unit's body or
any external uses of the unit. This compilation puts information about the
syntactic spccification into a program library, Later, when either the
unit's body or an external use of the unit is compiled, this information is

B.1.6.3

retrieved from the program library and used for compile-time consistency
checks,

The consistency checks that occur during compilation are limited to the
information found in a unit's syntactic specification, such as the number,
types, and modes of subprogram parameters., Except for this limitation,
however, they are analogous to the checks that occur during unit validation,
Just as a unit has a syntactic specification that is checked during
compilation, 4t has a semantic specification that 1is checked during
validation, Just as syntactic specifications are recorded in a program
library, semantic specifications are recorded in a MAVEN validation library.

Semantic specifications are textually embedded in syntactic
specifications in the form of structured comments like those found in Anna
[3]. This unifies the notions of syntactic and semantic specifications,
When MAVEN is directed to compile a specification, it invokes the Ada
compiler to place the syntactic specification in the program library. If no
compile~time errors are found, the semantic specification is then extracted
from the structured comments and added to the validation library.

2.1 Validation Order

To facilitate compile-time consistency checks, the Ada language
restricts the order in which units may be compiled. MAVEN imposes analogous
restrictions »n the order of validation, Specifically, a module's semantic
specification must be entered into the validation library before the
implementation or any use of the module 1is validated. Then the
implementation and each use of the module may be validated in any order.
Validation of the implementation establishes that the body fulfills the
semantic specif.cation., Validation of a use of the module involves assuming,
while validating the wusing module, that the semantic specification Iis
correctly implemented, This assumption is permitted as soon as the semantic
specification is entered into the validation library, even before the body
has been demonstrated to fulfill the semantic specification. (This 1is
analogous to the compilation of a subprogram call after the subprogranm
declaration has beer compiled but before the subprogram body has been
compiled.) It implies that validation of one unit can proceed considering
only the specifications of the units it invokes, without considering their
bodies., This is the essence of module~by-module validation.

Some program units may be validated by fiat. That is, after a code
walkthrough or simply on the basis of trust, a unit may simply be decreed to
be "validated." This still must be done explicitly, by a request to MAVEN,
and the usual validation order rules must be obeyed. In particular, a unit
may not be decreed to be validated before the specifications it is meant to
fulfill have been entered into the program library,

B.1.6.4

R

R 1f.n;-&nx;-\§-“ DTN S

2.2 Revalidation Order

Just as the Ada language restricts compilation order, it imposes
recompilation requirements to ensure that consistency checks have always been
performed on the latest version of a program. If a syntactic specification
is recompiled, all consistency checks based on the old syntactic
specification are rendered invalid, The corresponding body and all uses of
the unit must then be recompiled so that the consistency checks may be
repeated with respect to the new syntactic specificatiorn,

MAVEN 1imposes analogous revalidation requirements, If a module's
semantic specification is changed, both the implementation and all uses of
the module must be revalidated if they have already been validated. This is
relevant during program development and program maintenance.

In program development, failure to validate a body may mean either that
the body does not correctly implement the corresponding logical specification
or that the logical specification itself is incomplete. 1In the first case,
the body can be corrected and validated. In the second case, the logical
specification must be modified and all other units using that 1logical
specification must be revalidated. This may require still further
modifications and revalidations.

In program maintenance, revalidation requirements indicate which parts
of a large program are potentially affected by a change. This can reduce or
eliminate the "ripple effect” typically resulting from a change to a working
program. All possible implications of the change will be flushed out by the
ensuing round of revalidations, assuming the revalidation is sufficiently
thorough. (If the revalidation is by unit testing, this process amounts to
regression testing, Rather than blindly repeating all tests, however, we use
validation dependency relationships to identify the tests that might possioly
have been affected by the change.)

A unit validated by fiat 1is subject to the same revalidation
requirements as any other wunit, even if revalidation consists only of
reissuing the decree by which the unit was originally validated. This
encourages software engineers to consider whether the original decree is
still valid given the new specifications, For example, it may be discovered
that an off-the-shelf package originally thought to be applicable to the
current application is inappropriate given the revised specifications,

2.3 Other Information in the Validation Library

A validation 1library contains information ©besides the semantic
specifications of program units, A validation plan can be entered into the
library in advance, stipulating how a unit will be validated once it is
written, The validation library also records which wunits have been
validated, and according to which validation plans.

ORIGINAL PACE IS

Bo1.6.5 OF POOR QUALITY

Each module may hive its own validation plan. The plan specifies the
validation method applied to the unit (testing or formal proof, for example)
and the details of the validation criteria (which files contain the test
driver or test data, algorithms for evaluating test results, or which
properties are to be proven, for example)., A validation plan may specify
several rounds of validation, all of which must succeed for th: unit to be
considered validated. For example, a plan may call for testing to find and
eliminate obvious errors, followed by formal proof to ensure the absence of
more Subtle errors. No one round of validation need provide complete
coverage of the unit's semantic specification. Some parts of a wunit's
semantic specification may be proven valid, some validated by testing, and
some simply assumed to be valid, for example,

Besides allowing MAVEN to enforce validation and revalidation order
dependencies, the data kept in the validation library allows MAVEN tools to
generate reports on the progress of system validation to date. The reports
indicate which wunits have been validated and how rigorously,. Duricy
development, validation of units can be tracked and compared with schedules.
When an error arises, irformation about the validation methods applied to
each unit and the properties validated for each unit can help pinpoint
suspect modules. Tiie revalidation implications of a proposed change can
quickly be estimated.

3 Other Components of a Validation Environment

A verifier is only one of the tools that a validation environment should
provide. We have already mentioned the need for a validation library. This
implies the need for library management tools,; inclue’ny tne
report-generation tools discussed above, Other tools can assist in Ui~
writing of specifications, the retrieval of reusable software from & large
catalogue, and the execution and analysis of tests.

Formal specifications are at the heart of MAVEN, but they are difficult
for the typical software engineer to write, Therefore MAVEN must supply
tools to help the software engincer express his intent. These tools are
collectively called the specification-writer's assistant. One component of
the specification-writer's assistant is a knowledge-based too. that will
construct formal specifications based on a dialogue with the user. The
specification-writer's arcsistant also includes an interpreter for a logic
programming language, similar to PROLOG but providing the higher level of
data abstraction found in the Ada language. This tool can be used for rapid
prototyping, to test specifications as they are written,

The Ada language is meant to encourage the reuse of general-purpose
software components, This approach can only have a significant impact on
software development costs if there is a large vorpi.s of general-purpose
software available for reuse; but such & large corpus presents an awesome
information-retrieval problem, While software vretrieval 1is not usually
viought of as a validatinn problem, Platek [4] has noted that formal

B.1.6.6

ORIGINMIL FAZE 18
OF POOR QUALITY

specifications and verification can form the basis of a retrieval tool. In
addition to a validation 1library, MAVEN might include a catalogue of
general-purpose, reusable software components, all of which have been
formally specified. Given the semantic specification of a module required in
the design, a MAVEN tool would search the catalogue for reusable components
that can be proven to have compatible specifications.

Because testing is the most frequently used validation method, MAVEN
contains tools sgecifically supporting testing. These include tools to
generate subprogram stubs, tools to generate test drivers, tools to generate
test data, and tools to analyze test results. All of these tools can base
their outputs at least in part on the semantic specifications found in the
validation 1library. For embedded applications, there should be software
similation tools and tools providing interfaces with hardware mockups. A
related tool would administer tests automatically, based on the validation
plans found in the validation library. Such a tool could also revalidate
those wunite validated entirely by testing, whenever revalidation is
required., In essence, this automates regression testing.

4 MAVEN and the Software Life Cycle

MAVEN tools are primarily concerred with unit validation. This can lead
to the impression that the benefits of MAVEN are primarily reaped during the
unit validation stage of the life cycle, In fact, the use of MAVEN imposes a
discipline on software development and provides benefits throughout the
software life cycle. This section walks through a typical waterfall model of
the life cycle and describes the impact of MAVEN on each stage.

4.1 Requirements Analysis

The specification-writer's assistant supports the formal expression of
requirements, Requirement; can be entered into a new MAVFN validation
library as the semantic specifications of the main program and of tasks
declared in library packages. These formally stated requirements can be
checked for consistency using a verifier. They may later become the basis
for design verification and code verification. An integration-testing plan
may be derived from the formal requirements and stored in the validation
library until software integration time,

4,2 Design

During high-level design, the modular decomposition of a system is
determined and the specifications of each module ar« written.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>